Artificial Intelligence for Digital and Computational Pathology
- URL: http://arxiv.org/abs/2401.06148v1
- Date: Wed, 13 Dec 2023 00:22:52 GMT
- Title: Artificial Intelligence for Digital and Computational Pathology
- Authors: Andrew H. Song, Guillaume Jaume, Drew F.K. Williamson, Ming Y. Lu,
Anurag Vaidya, Tiffany R. Miller, Faisal Mahmood
- Abstract summary: Advances in digitizing tissue slides and the fast-paced progress in artificial intelligence have boosted the field of computational pathology.
This Review consolidates recent methodological advances for predicting clinical end points in whole-slide images.
It highlights how these developments enable the automation of clinical practice and the discovery of new biomarkers.
- Score: 8.255348228685682
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Advances in digitizing tissue slides and the fast-paced progress in
artificial intelligence, including deep learning, have boosted the field of
computational pathology. This field holds tremendous potential to automate
clinical diagnosis, predict patient prognosis and response to therapy, and
discover new morphological biomarkers from tissue images. Some of these
artificial intelligence-based systems are now getting approved to assist
clinical diagnosis; however, technical barriers remain for their widespread
clinical adoption and integration as a research tool. This Review consolidates
recent methodological advances in computational pathology for predicting
clinical end points in whole-slide images and highlights how these developments
enable the automation of clinical practice and the discovery of new biomarkers.
We then provide future perspectives as the field expands into a broader range
of clinical and research tasks with increasingly diverse modalities of clinical
data.
Related papers
- Clinical Evaluation of Medical Image Synthesis: A Case Study in Wireless Capsule Endoscopy [63.39037092484374]
This study focuses on the clinical evaluation of medical Synthetic Data Generation using Artificial Intelligence (AI) models.
The paper contributes by a) presenting a protocol for the systematic evaluation of synthetic images by medical experts and b) applying it to assess TIDE-II, a novel variational autoencoder-based model for high-resolution WCE image synthesis.
The results show that TIDE-II generates clinically relevant WCE images, helping to address data scarcity and enhance diagnostic tools.
arXiv Detail & Related papers (2024-10-31T19:48:50Z) - TopOC: Topological Deep Learning for Ovarian and Breast Cancer Diagnosis [3.262230127283452]
Topological data analysis offers a unique approach by extracting essential information through the evaluation of topological patterns across different color channels.
We show that the inclusion of topological features significantly improves the differentiation of tumor types in ovarian and breast cancers.
arXiv Detail & Related papers (2024-10-13T12:24:13Z) - A review of handcrafted and deep radiomics in neurological diseases: transitioning from oncology to clinical neuroimaging [2.651601515140236]
Radiomics is a methodology aimed at extracting quantitative information from imaging data.
This paper presents a review of the radiomic pipeline from the clinical perspective.
It discusses the application of handcrafted and deep radiomics in neuroimaging, stratified by neurological diagnosis.
arXiv Detail & Related papers (2024-07-18T16:12:07Z) - Validating polyp and instrument segmentation methods in colonoscopy through Medico 2020 and MedAI 2021 Challenges [58.32937972322058]
"Medico automatic polyp segmentation (Medico 2020)" and "MedAI: Transparency in Medical Image (MedAI 2021)" competitions.
We present a comprehensive summary and analyze each contribution, highlight the strength of the best-performing methods, and discuss the possibility of clinical translations of such methods into the clinic.
arXiv Detail & Related papers (2023-07-30T16:08:45Z) - AutoPrognosis 2.0: Democratizing Diagnostic and Prognostic Modeling in
Healthcare with Automated Machine Learning [72.2614468437919]
We present a machine learning framework, AutoPrognosis 2.0, to develop diagnostic and prognostic models.
We provide an illustrative application where we construct a prognostic risk score for diabetes using the UK Biobank.
Our risk score has been implemented as a web-based decision support tool and can be publicly accessed by patients and clinicians worldwide.
arXiv Detail & Related papers (2022-10-21T16:31:46Z) - A review of machine learning approaches, challenges and prospects for
computational tumor pathology [1.2036642553849346]
Tumor computational pathology challenges data integration, hardware processing, network sharing bandwidth and machine learning technology.
This review investigates preprocessing methods in computational pathology from a pathological and technical perspective.
The challenges and prospects of machine learning in computational pathology applications are discussed.
arXiv Detail & Related papers (2022-05-31T14:56:01Z) - OncoPetNet: A Deep Learning based AI system for mitotic figure counting
on H&E stained whole slide digital images in a large veterinary diagnostic
lab setting [47.38796928990688]
Multiple state-of-the-art deep learning techniques for histopathology image classification and mitotic figure detection were used in the development of OncoPetNet.
The proposed system, demonstrated significantly improved mitotic counting performance for 41 cancer cases across 14 cancer types compared to human expert baselines.
In deployment, an effective 0.27 min/slide inference was achieved in a high throughput veterinary diagnostic service across 2 centers processing 3,323 digital whole slide images daily.
arXiv Detail & Related papers (2021-08-17T20:01:33Z) - Computer-Assisted Analysis of Biomedical Images [1.0116577992023341]
This thesis aims at proposing novel and advanced computer-assisted methods for biomedical image analysis.
The ultimate goal of these research studies is to gain clinically and biologically useful insights that can guide differential diagnosis and therapies.
arXiv Detail & Related papers (2021-06-04T21:59:48Z) - Machine Learning Applications for Therapeutic Tasks with Genomics Data [49.98249191161107]
We review the literature on machine learning applications for genomics through the lens of therapeutic development.
We identify twenty-two machine learning in genomics applications across the entire therapeutics pipeline.
We pinpoint seven important challenges in this field with opportunities for expansion and impact.
arXiv Detail & Related papers (2021-05-03T21:20:20Z) - Medical Imaging and Machine Learning [16.240472115235253]
The National Institutes of Health in 2018 identified key focus areas for the future of artificial intelligence in medical imaging.
Data availability, need for novel computing architectures and explainable AI algorithms, are still relevant.
In this paper we explore challenges unique to high dimensional clinical imaging data, in addition to highlighting some of the technical and ethical considerations.
arXiv Detail & Related papers (2021-03-02T18:53:39Z) - Explaining Clinical Decision Support Systems in Medical Imaging using
Cycle-Consistent Activation Maximization [112.2628296775395]
Clinical decision support using deep neural networks has become a topic of steadily growing interest.
clinicians are often hesitant to adopt the technology because its underlying decision-making process is considered to be intransparent and difficult to comprehend.
We propose a novel decision explanation scheme based on CycleGAN activation which generates high-quality visualizations of classifier decisions even in smaller data sets.
arXiv Detail & Related papers (2020-10-09T14:39:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.