A review of handcrafted and deep radiomics in neurological diseases: transitioning from oncology to clinical neuroimaging
- URL: http://arxiv.org/abs/2407.13813v1
- Date: Thu, 18 Jul 2024 16:12:07 GMT
- Title: A review of handcrafted and deep radiomics in neurological diseases: transitioning from oncology to clinical neuroimaging
- Authors: Elizaveta Lavrova, Henry C. Woodruff, Hamza Khan, Eric Salmon, Philippe Lambin, Christophe Phillips,
- Abstract summary: Radiomics is a methodology aimed at extracting quantitative information from imaging data.
This paper presents a review of the radiomic pipeline from the clinical perspective.
It discusses the application of handcrafted and deep radiomics in neuroimaging, stratified by neurological diagnosis.
- Score: 2.651601515140236
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Medical imaging technologies have undergone extensive development, enabling non-invasive visualization of clinical information. The traditional review of medical images by clinicians remains subjective, time-consuming, and prone to human error. With the recent availability of medical imaging data, quantification have become important goals in the field. Radiomics, a methodology aimed at extracting quantitative information from imaging data, has emerged as a promising approach to uncover hidden biological information and support decision-making in clinical practice. This paper presents a review of the radiomic pipeline from the clinical neuroimaging perspective, providing a detailed overview of each step with practical advice. It discusses the application of handcrafted and deep radiomics in neuroimaging, stratified by neurological diagnosis. Although radiomics shows great potential for increasing diagnostic precision and improving treatment quality in neurology, several limitations hinder its clinical implementation. Addressing these challenges requires collaborative efforts, advancements in image harmonization methods, and the establishment of reproducible and standardized pipelines with transparent reporting. By overcoming these obstacles, radiomics can significantly impact clinical neurology and enhance patient care.
Related papers
- Anatomy-Guided Radiology Report Generation with Pathology-Aware Regional Prompts [3.1019279528120363]
Radiology reporting generative AI holds significant potential to alleviate clinical workloads and streamline medical care.
Existing systems often fall short due to their reliance on fixed size, patch-level image features and insufficient incorporation of pathological information.
We propose an innovative approach that leverages pathology-aware regional prompts to explicitly integrate anatomical and pathological information of various scales.
arXiv Detail & Related papers (2024-11-16T12:36:20Z) - Clinical Evaluation of Medical Image Synthesis: A Case Study in Wireless Capsule Endoscopy [63.39037092484374]
This study focuses on the clinical evaluation of medical Synthetic Data Generation using Artificial Intelligence (AI) models.
The paper contributes by a) presenting a protocol for the systematic evaluation of synthetic images by medical experts and b) applying it to assess TIDE-II, a novel variational autoencoder-based model for high-resolution WCE image synthesis.
The results show that TIDE-II generates clinically relevant WCE images, helping to address data scarcity and enhance diagnostic tools.
arXiv Detail & Related papers (2024-10-31T19:48:50Z) - Adversarial Neural Networks in Medical Imaging Advancements and Challenges in Semantic Segmentation [6.88255677115486]
Recent advancements in artificial intelligence (AI) have precipitated a paradigm shift in medical imaging.
This paper systematically investigates the integration of deep learning -- a principal branch of AI -- into the semantic segmentation of brain images.
adversarial neural networks, a novel AI approach that not only automates but also refines the semantic segmentation process.
arXiv Detail & Related papers (2024-10-17T00:05:05Z) - Optimizing Skin Lesion Classification via Multimodal Data and Auxiliary
Task Integration [54.76511683427566]
This research introduces a novel multimodal method for classifying skin lesions, integrating smartphone-captured images with essential clinical and demographic information.
A distinctive aspect of this method is the integration of an auxiliary task focused on super-resolution image prediction.
The experimental evaluations have been conducted using the PAD-UFES20 dataset, applying various deep-learning architectures.
arXiv Detail & Related papers (2024-02-16T05:16:20Z) - Radiology Report Generation Using Transformers Conditioned with
Non-imaging Data [55.17268696112258]
This paper proposes a novel multi-modal transformer network that integrates chest x-ray (CXR) images and associated patient demographic information.
The proposed network uses a convolutional neural network to extract visual features from CXRs and a transformer-based encoder-decoder network that combines the visual features with semantic text embeddings of patient demographic information.
arXiv Detail & Related papers (2023-11-18T14:52:26Z) - Can GPT-4V(ision) Serve Medical Applications? Case Studies on GPT-4V for
Multimodal Medical Diagnosis [59.35504779947686]
GPT-4V is OpenAI's newest model for multimodal medical diagnosis.
Our evaluation encompasses 17 human body systems.
GPT-4V demonstrates proficiency in distinguishing between medical image modalities and anatomy.
It faces significant challenges in disease diagnosis and generating comprehensive reports.
arXiv Detail & Related papers (2023-10-15T18:32:27Z) - ChatRadio-Valuer: A Chat Large Language Model for Generalizable
Radiology Report Generation Based on Multi-institution and Multi-system Data [115.0747462486285]
ChatRadio-Valuer is a tailored model for automatic radiology report generation that learns generalizable representations.
The clinical dataset utilized in this study encompasses a remarkable total of textbf332,673 observations.
ChatRadio-Valuer consistently outperforms state-of-the-art models, especially ChatGPT (GPT-3.5-Turbo) and GPT-4 et al.
arXiv Detail & Related papers (2023-10-08T17:23:17Z) - Graph Convolutional Networks for Multi-modality Medical Imaging:
Methods, Architectures, and Clinical Applications [13.940158397866625]
Development of graph convolutional networks (GCNs) has spawned a new wave of research in medical imaging analysis.
GCNs capabilities have spawned a new wave of research in medical imaging analysis with the overarching goal of improving quantitative disease understanding, monitoring, and diagnosis.
arXiv Detail & Related papers (2022-02-17T22:03:59Z) - Computer-Assisted Analysis of Biomedical Images [1.0116577992023341]
This thesis aims at proposing novel and advanced computer-assisted methods for biomedical image analysis.
The ultimate goal of these research studies is to gain clinically and biologically useful insights that can guide differential diagnosis and therapies.
arXiv Detail & Related papers (2021-06-04T21:59:48Z) - Deep and Statistical Learning in Biomedical Imaging: State of the Art in
3D MRI Brain Tumor Segmentation [1.7403133838762446]
We critically review major statistical and deep learning models and their applications in brain imaging research.
The results do highlight that model-driven classical statistics and data-driven deep learning is a potent combination for developing automated systems in clinical oncology.
arXiv Detail & Related papers (2021-03-09T16:15:47Z) - Explaining Clinical Decision Support Systems in Medical Imaging using
Cycle-Consistent Activation Maximization [112.2628296775395]
Clinical decision support using deep neural networks has become a topic of steadily growing interest.
clinicians are often hesitant to adopt the technology because its underlying decision-making process is considered to be intransparent and difficult to comprehend.
We propose a novel decision explanation scheme based on CycleGAN activation which generates high-quality visualizations of classifier decisions even in smaller data sets.
arXiv Detail & Related papers (2020-10-09T14:39:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.