Scissorhands: Scrub Data Influence via Connection Sensitivity in Networks
- URL: http://arxiv.org/abs/2401.06187v3
- Date: Wed, 17 Jul 2024 14:34:04 GMT
- Title: Scissorhands: Scrub Data Influence via Connection Sensitivity in Networks
- Authors: Jing Wu, Mehrtash Harandi,
- Abstract summary: We present a new machine unlearning approach Scissorhands to erase the influence of data from a trained model.
Our experimental results, conducted across image classification and image generation tasks, demonstrate that Scissorhands, showcases competitive performance.
- Score: 26.388179714663593
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine unlearning has become a pivotal task to erase the influence of data from a trained model. It adheres to recent data regulation standards and enhances the privacy and security of machine learning applications. In this work, we present a new machine unlearning approach Scissorhands. Initially, Scissorhands identifies the most pertinent parameters in the given model relative to the forgetting data via connection sensitivity. By reinitializing the most influential top-k percent of these parameters, a trimmed model for erasing the influence of the forgetting data is obtained. Subsequently, Scissorhands fine-tunes the trimmed model with a gradient projection-based approach, seeking parameters that preserve information on the remaining data while discarding information related to the forgetting data. Our experimental results, conducted across image classification and image generation tasks, demonstrate that Scissorhands, showcases competitive performance when compared to existing methods. Source code is available at https://github.com/JingWu321/Scissorhands.
Related papers
- Data Selection for Transfer Unlearning [14.967546081883034]
We advocate for a relaxed definition of unlearning that does not address privacy applications.
We propose a new method that uses a mechanism for selecting relevant examples from an auxiliary "static" dataset.
We find that our method outperforms the gold standard "exact unlearning" on several datasets.
arXiv Detail & Related papers (2024-05-16T20:09:41Z) - An Information Theoretic Approach to Machine Unlearning [43.423418819707784]
To comply with AI and data regulations, the need to forget private or copyrighted information from trained machine learning models is increasingly important.
In this work, we address the zero-shot unlearning scenario, whereby an unlearning algorithm must be able to remove data given only a trained model and the data to be forgotten.
We derive a simple but principled zero-shot unlearning method based on the geometry of the model.
arXiv Detail & Related papers (2024-02-02T13:33:30Z) - Enhancing Consistency and Mitigating Bias: A Data Replay Approach for
Incremental Learning [100.7407460674153]
Deep learning systems are prone to catastrophic forgetting when learning from a sequence of tasks.
To mitigate the problem, a line of methods propose to replay the data of experienced tasks when learning new tasks.
However, it is not expected in practice considering the memory constraint or data privacy issue.
As a replacement, data-free data replay methods are proposed by inverting samples from the classification model.
arXiv Detail & Related papers (2024-01-12T12:51:12Z) - Learn to Unlearn for Deep Neural Networks: Minimizing Unlearning
Interference with Gradient Projection [56.292071534857946]
Recent data-privacy laws have sparked interest in machine unlearning.
Challenge is to discard information about the forget'' data without altering knowledge about remaining dataset.
We adopt a projected-gradient based learning method, named as Projected-Gradient Unlearning (PGU)
We provide empirically evidence to demonstrate that our unlearning method can produce models that behave similar to models retrained from scratch across various metrics even when the training dataset is no longer accessible.
arXiv Detail & Related papers (2023-12-07T07:17:24Z) - CovarNav: Machine Unlearning via Model Inversion and Covariance
Navigation [11.222501077070765]
Machine unlearning has emerged as an essential technique to selectively remove the influence of specific training data points on trained models.
We introduce a three-step process, named CovarNav, to facilitate this forgetting.
We rigorously evaluate CovarNav on the CIFAR-10 and Vggface2 datasets.
arXiv Detail & Related papers (2023-11-21T21:19:59Z) - Learning to Unlearn: Instance-wise Unlearning for Pre-trained
Classifiers [71.70205894168039]
We consider instance-wise unlearning, of which the goal is to delete information on a set of instances from a pre-trained model.
We propose two methods that reduce forgetting on the remaining data: 1) utilizing adversarial examples to overcome forgetting at the representation-level and 2) leveraging weight importance metrics to pinpoint network parameters guilty of propagating unwanted information.
arXiv Detail & Related papers (2023-01-27T07:53:50Z) - Localized Shortcut Removal [4.511561231517167]
High performance on held-out test data does not necessarily indicate that a model generalizes or learns anything meaningful.
This is often due to the existence of machine learning shortcuts - features in the data that are predictive but unrelated to the problem at hand.
We use an adversarially trained lens to detect and eliminate highly predictive but semantically unconnected clues in images.
arXiv Detail & Related papers (2022-11-24T13:05:33Z) - Machine Unlearning of Features and Labels [72.81914952849334]
We propose first scenarios for unlearning and labels in machine learning models.
Our approach builds on the concept of influence functions and realizes unlearning through closed-form updates of model parameters.
arXiv Detail & Related papers (2021-08-26T04:42:24Z) - SSSE: Efficiently Erasing Samples from Trained Machine Learning Models [103.43466657962242]
We propose an efficient and effective algorithm, SSSE, for samples erasure.
In certain cases SSSE can erase samples almost as well as the optimal, yet impractical, gold standard of training a new model from scratch with only the permitted data.
arXiv Detail & Related papers (2021-07-08T14:17:24Z) - Trade-offs between membership privacy & adversarially robust learning [13.37805637358556]
We identify settings where standard models will overfit to a larger extent in comparison to robust models.
The degree of overfitting naturally depends on the amount of data available for training.
arXiv Detail & Related papers (2020-06-08T14:20:12Z) - Omni-supervised Facial Expression Recognition via Distilled Data [120.11782405714234]
We propose omni-supervised learning to exploit reliable samples in a large amount of unlabeled data for network training.
We experimentally verify that the new dataset can significantly improve the ability of the learned FER model.
To tackle this, we propose to apply a dataset distillation strategy to compress the created dataset into several informative class-wise images.
arXiv Detail & Related papers (2020-05-18T09:36:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.