論文の概要: TriNeRFLet: A Wavelet Based Triplane NeRF Representation
- arxiv url: http://arxiv.org/abs/2401.06191v2
- Date: Wed, 17 Jul 2024 21:14:34 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-19 21:41:25.911602
- Title: TriNeRFLet: A Wavelet Based Triplane NeRF Representation
- Title(参考訳): TriNeRFLet:ウェーブレットをベースとした三面体NeRF表現
- Authors: Rajaei Khatib, Raja Giryes,
- Abstract要約: 本研究では,NRFの2次元ウェーブレットに基づくマルチスケールトリプレーン表現を提案する。
また, 拡散モデルとTriNeRFLetを組み合わせた新しい超解像法を提案する。
- 参考スコア(独自算出の注目度): 31.43307762723943
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In recent years, the neural radiance field (NeRF) model has gained popularity due to its ability to recover complex 3D scenes. Following its success, many approaches proposed different NeRF representations in order to further improve both runtime and performance. One such example is Triplane, in which NeRF is represented using three 2D feature planes. This enables easily using existing 2D neural networks in this framework, e.g., to generate the three planes. Despite its advantage, the triplane representation lagged behind in its 3D recovery quality compared to NeRF solutions. In this work, we propose TriNeRFLet, a 2D wavelet-based multiscale triplane representation for NeRF, which closes the 3D recovery performance gap and is competitive with current state-of-the-art methods. Building upon the triplane framework, we also propose a novel super-resolution (SR) technique that combines a diffusion model with TriNeRFLet for improving NeRF resolution.
- Abstract(参考訳): 近年,複雑な3Dシーンを復元する能力により,ニューラルレイディアンス・フィールド(NeRF)モデルが人気を集めている。
成功の後、多くのアプローチがランタイムとパフォーマンスの両方を改善するために異なるNeRF表現を提案した。
この例の1つはトリプレーンで、NeRFは3つの2次元特徴平面で表される。
これにより、このフレームワークの既存の2Dニューラルネットワーク、例えば、簡単に3つの平面を生成することができる。
アドバンテージにもかかわらず、トリプレーンの表現は、NeRFソリューションと比較して3Dリカバリ品質に遅れを取っていた。
本研究では,NeRFの2次元ウェーブレットに基づくマルチスケールトリプレーン表現であるTriNeRFLetを提案する。
また, 拡散モデルとTriNeRFLetを組み合わせた新しい超解像(SR)手法を提案する。
関連論文リスト
- DiSR-NeRF: Diffusion-Guided View-Consistent Super-Resolution NeRF [50.458896463542494]
DiSR-NeRFは、ビュー一貫性を持つ超解像(SR)NeRFのための拡散誘導フレームワークである。
我々は,NeRFの固有多視点整合性により不整合問題を緩和するイテレーティブ3Dシンクロナイゼーション(I3DS)を提案する。
論文 参考訳(メタデータ) (2024-04-01T03:06:23Z) - Prompt2NeRF-PIL: Fast NeRF Generation via Pretrained Implicit Latent [61.56387277538849]
本稿では,3次元シーンの直接条件付けと高速なNeRFパラメータ生成のための高速なNeRF生成について検討する。
Prompt2NeRF-PILは、単一の前方通過で様々な3Dオブジェクトを生成することができる。
我々は,テキストからNeRFモデルDreamFusionと画像からNeRF手法Zero-1-to-3の3次元再構成速度を3倍から5倍に高速化することを示す。
論文 参考訳(メタデータ) (2023-12-05T08:32:46Z) - Registering Neural Radiance Fields as 3D Density Images [55.64859832225061]
我々は,様々な場面でトレーニングやテストが可能な,普遍的な事前学習型ニューラルネットワークを提案する。
我々は,グローバルアプローチとして,NeRFモデルを効果的に登録できることを実証した。
論文 参考訳(メタデータ) (2023-05-22T09:08:46Z) - NeRF-GAN Distillation for Efficient 3D-Aware Generation with
Convolutions [97.27105725738016]
GAN(Generative Adversarial Networks)のようなニューラルラジアンスフィールド(NeRF)と生成モデルの統合は、単一ビュー画像から3D認識生成を変換した。
提案手法は,ポーズ条件付き畳み込みネットワークにおいて,事前学習したNeRF-GANの有界遅延空間を再利用し,基礎となる3次元表現に対応する3D一貫性画像を直接生成する手法である。
論文 参考訳(メタデータ) (2023-03-22T18:59:48Z) - FeatureNeRF: Learning Generalizable NeRFs by Distilling Foundation
Models [21.523836478458524]
一般化可能なNeRFに関する最近の研究は、単一または少数の画像からの新規なビュー合成に関する有望な結果を示している。
本研究では,事前学習された視覚モデルを蒸留することにより,一般化可能なNeRFを学習するためのFeatureNeRFという新しいフレームワークを提案する。
一般化可能な3次元特徴抽出器としてのFeatureNeRFの有効性を実証した。
論文 参考訳(メタデータ) (2023-03-22T17:57:01Z) - DehazeNeRF: Multiple Image Haze Removal and 3D Shape Reconstruction
using Neural Radiance Fields [56.30120727729177]
DehazeNeRFは,湿潤な環境下で頑健に動作するフレームワークとして紹介する。
提案手法は,複数視点のヘイズ除去,新しいビュー合成,既存手法が失敗する3次元形状再構成を成功させるものである。
論文 参考訳(メタデータ) (2023-03-20T18:03:32Z) - NerfDiff: Single-image View Synthesis with NeRF-guided Distillation from
3D-aware Diffusion [107.67277084886929]
単一の画像からの新しいビュー合成には、オブジェクトやシーンの隠蔽領域を推論すると同時に、入力とのセマンティックおよび物理的整合性を同時に維持する必要がある。
そこで我々は,NerfDiffを提案する。NerfDiffは3D対応条件拡散モデル(CDM)の知識を,テスト時に仮想ビューの集合を合成・精製することで,NeRFに抽出することでこの問題に対処する。
さらに,CDMサンプルから3次元一貫した仮想ビューを同時に生成し,改良された仮想ビューに基づいてNeRFを微調整する新しいNeRF誘導蒸留アルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-02-20T17:12:00Z) - HyperNeRFGAN: Hypernetwork approach to 3D NeRF GAN [3.479254848034425]
我々は、ハイパーネットワークのパラダイムを用いて、NeRFで表現された3Dオブジェクトを生成するHyperNeRFGANという生成モデルを提案する。
アーキテクチャは2D画像を生成するが、3D対応のNeRF表現を使用し、モデルに正しい3Dオブジェクトを生成するように強制する。
論文 参考訳(メタデータ) (2023-01-27T10:21:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。