論文の概要: DehazeNeRF: Multiple Image Haze Removal and 3D Shape Reconstruction
using Neural Radiance Fields
- arxiv url: http://arxiv.org/abs/2303.11364v1
- Date: Mon, 20 Mar 2023 18:03:32 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-22 17:42:29.435990
- Title: DehazeNeRF: Multiple Image Haze Removal and 3D Shape Reconstruction
using Neural Radiance Fields
- Title(参考訳): DehazeNeRF:ニューラルラジアンス場を用いた複数画像ヘイズ除去と3次元形状再構成
- Authors: Wei-Ting Chen, Wang Yifan, Sy-Yen Kuo, Gordon Wetzstein
- Abstract要約: DehazeNeRFは,湿潤な環境下で頑健に動作するフレームワークとして紹介する。
提案手法は,複数視点のヘイズ除去,新しいビュー合成,既存手法が失敗する3次元形状再構成を成功させるものである。
- 参考スコア(独自算出の注目度): 56.30120727729177
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Neural radiance fields (NeRFs) have demonstrated state-of-the-art performance
for 3D computer vision tasks, including novel view synthesis and 3D shape
reconstruction. However, these methods fail in adverse weather conditions. To
address this challenge, we introduce DehazeNeRF as a framework that robustly
operates in hazy conditions. DehazeNeRF extends the volume rendering equation
by adding physically realistic terms that model atmospheric scattering. By
parameterizing these terms using suitable networks that match the physical
properties, we introduce effective inductive biases, which, together with the
proposed regularizations, allow DehazeNeRF to demonstrate successful multi-view
haze removal, novel view synthesis, and 3D shape reconstruction where existing
approaches fail.
- Abstract(参考訳): ニューラルレイディアンス場(NeRF)は、新しいビュー合成や3次元形状再構成を含む3次元コンピュータビジョンタスクの最先端性能を示す。
しかし、これらの手法は悪天候下では失敗する。
この課題に対処するため,我々は,ヘイズ条件下で頑健に動作するフレームワークとしてDehazeNeRFを紹介した。
DehazeNeRFは、大気散乱をモデル化する物理的に現実的な用語を追加することで体積レンダリング方程式を拡張する。
これらの用語を物理的性質に適合する適切なネットワークを用いてパラメータ化することにより,提案する正規化と合わせて,既存のアプローチが失敗するようなマルチビューhaze除去,新しいビュー合成,および3次元形状再構成を成功させる効果的な帰納バイアスを導入する。
関連論文リスト
- AniSDF: Fused-Granularity Neural Surfaces with Anisotropic Encoding for High-Fidelity 3D Reconstruction [55.69271635843385]
AniSDF(AniSDF)は,高忠実度3次元再構成のための物理に基づく符号化による融合粒度ニューラルサーフェスを学習する新しいアプローチである。
本手法は, 幾何再構成と新規ビュー合成の両面において, SDF法の品質を飛躍的に向上させる。
論文 参考訳(メタデータ) (2024-10-02T03:10:38Z) - Taming Latent Diffusion Model for Neural Radiance Field Inpainting [63.297262813285265]
ニューラル・ラジアンス・フィールド(NeRF)は多視点画像からの3次元再構成の表現である。
本研究では,シーンごとのカスタマイズによる拡散モデルの傾向の緩和と,マスキングトレーニングによるテクスチャシフトの緩和を提案する。
我々のフレームワークは、様々な現実世界のシーンに最先端のNeRF塗装結果をもたらす。
論文 参考訳(メタデータ) (2024-04-15T17:59:57Z) - Dehazing-NeRF: Neural Radiance Fields from Hazy Images [13.92247691561793]
画像入力からNRFを除去する手法であるDehazing-NeRFを提案する。
本研究では,大気散乱モデルを用いて,ハズ画像の物理像化過程をシミュレートする。
画像のデハージングと新しいビュー合成の両方において、単一像のデハージングとNeRFの単純な組み合わせよりも優れる。
論文 参考訳(メタデータ) (2023-04-22T17:09:05Z) - Single-Stage Diffusion NeRF: A Unified Approach to 3D Generation and
Reconstruction [77.69363640021503]
3D対応画像合成は、シーン生成や画像からの新規ビュー合成など、様々なタスクを含む。
本稿では,様々な物体の多視点画像から,ニューラルラディアンス場(NeRF)の一般化可能な事前学習を行うために,表現拡散モデルを用いた統一的アプローチであるSSDNeRFを提案する。
論文 参考訳(メタデータ) (2023-04-13T17:59:01Z) - Clean-NeRF: Reformulating NeRF to account for View-Dependent
Observations [67.54358911994967]
本稿では,複雑なシーンにおける3次元再構成と新しいビューレンダリングのためのクリーンネRFを提案する。
clean-NeRFはプラグインとして実装することができ、既存のNeRFベースのメソッドを追加入力なしですぐに利用することができる。
論文 参考訳(メタデータ) (2023-03-26T12:24:31Z) - NerfDiff: Single-image View Synthesis with NeRF-guided Distillation from
3D-aware Diffusion [107.67277084886929]
単一の画像からの新しいビュー合成には、オブジェクトやシーンの隠蔽領域を推論すると同時に、入力とのセマンティックおよび物理的整合性を同時に維持する必要がある。
そこで我々は,NerfDiffを提案する。NerfDiffは3D対応条件拡散モデル(CDM)の知識を,テスト時に仮想ビューの集合を合成・精製することで,NeRFに抽出することでこの問題に対処する。
さらに,CDMサンプルから3次元一貫した仮想ビューを同時に生成し,改良された仮想ビューに基づいてNeRFを微調整する新しいNeRF誘導蒸留アルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-02-20T17:12:00Z) - Learning Neural Radiance Fields from Multi-View Geometry [1.1011268090482573]
画像に基づく3次元再構成のために,多視点幾何アルゴリズムとニューラルレージアンス場(NeRF)を組み合わせたMVG-NeRF(MVG-NeRF)というフレームワークを提案する。
NeRFは暗黙の3D表現の分野に革命をもたらした。
論文 参考訳(メタデータ) (2022-10-24T08:53:35Z) - OmniNeRF: Hybriding Omnidirectional Distance and Radiance fields for
Neural Surface Reconstruction [22.994952933576684]
神経放射場(NeRF)における地中破壊研究は、3Dオブジェクトの表現品質を劇的に改善した。
後年の研究では、TSDF(truncated signed distance field)を構築することでNeRFを改善したが、3D再構成における表面のぼやけた問題に悩まされている。
本研究では,3次元形状表現の新たな手法であるOmniNeRFを提案することにより,この表面の曖昧さに対処する。
論文 参考訳(メタデータ) (2022-09-27T14:39:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。