論文の概要: Eyes Wide Shut? Exploring the Visual Shortcomings of Multimodal LLMs
- arxiv url: http://arxiv.org/abs/2401.06209v2
- Date: Thu, 25 Apr 2024 07:12:39 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-26 21:08:18.293677
- Title: Eyes Wide Shut? Exploring the Visual Shortcomings of Multimodal LLMs
- Title(参考訳): 眼の広いシャット : マルチモーダルLDMの視覚的欠点を探る
- Authors: Shengbang Tong, Zhuang Liu, Yuexiang Zhai, Yi Ma, Yann LeCun, Saining Xie,
- Abstract要約: 近年のマルチモーダル LLM の視覚能力は, いまだに系統的な欠点を呈している。
CLIP-blind pairs'(CLIP-blind pairs)を識別する。
様々なCLIPに基づく視覚・言語モデルの評価を行い、CLIPモデルに挑戦する視覚パターンとマルチモーダルLLMの問題との間に顕著な相関関係を見出した。
- 参考スコア(独自算出の注目度): 50.77984109941538
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Is vision good enough for language? Recent advancements in multimodal models primarily stem from the powerful reasoning abilities of large language models (LLMs). However, the visual component typically depends only on the instance-level contrastive language-image pre-training (CLIP). Our research reveals that the visual capabilities in recent multimodal LLMs (MLLMs) still exhibit systematic shortcomings. To understand the roots of these errors, we explore the gap between the visual embedding space of CLIP and vision-only self-supervised learning. We identify ''CLIP-blind pairs'' - images that CLIP perceives as similar despite their clear visual differences. With these pairs, we construct the Multimodal Visual Patterns (MMVP) benchmark. MMVP exposes areas where state-of-the-art systems, including GPT-4V, struggle with straightforward questions across nine basic visual patterns, often providing incorrect answers and hallucinated explanations. We further evaluate various CLIP-based vision-and-language models and found a notable correlation between visual patterns that challenge CLIP models and those problematic for multimodal LLMs. As an initial effort to address these issues, we propose a Mixture of Features (MoF) approach, demonstrating that integrating vision self-supervised learning features with MLLMs can significantly enhance their visual grounding capabilities. Together, our research suggests visual representation learning remains an open challenge, and accurate visual grounding is crucial for future successful multimodal systems.
- Abstract(参考訳): 視覚は言語に十分か?
近年のマルチモーダルモデルの発展は主に、大規模言語モデル(LLM)の強力な推論能力に起因している。
しかし、ビジュアルコンポーネントは通常、インスタンスレベルのコントラスト言語イメージ事前トレーニング(CLIP)にのみ依存する。
近年のMLLM(Multimodal LLM)の視覚能力は,いまだに体系的な欠点を呈している。
これらの誤りの根源を理解するために,CLIPの視覚埋め込み空間と視覚のみの自己教師型学習とのギャップについて検討する。
CLIP-blind pairs'(CLIP-blind pairs)を識別する。
これらのペアを使って、Multimodal Visual Patterns (MMVP)ベンチマークを構築する。
MMVPは、GPT-4Vを含む最先端のシステムが、9つの基本的な視覚的パターンにまたがる簡単な質問に苦しむ領域を公開している。
さらに,様々なCLIPに基づく視覚・言語モデルの評価を行い,CLIPモデルに挑戦する視覚パターンとマルチモーダルLLMの問題との間に顕著な相関関係を見出した。
これらの課題に対処するための最初の取り組みとして,MLLMと視覚自己教師型学習機能を統合することで,視覚的グラウンド機能を大幅に向上させることができる,Mixture of Features (MoF)アプローチを提案する。
両研究は、視覚表現学習は依然としてオープンな課題であり、将来のマルチモーダルシステムには正確な視覚的基盤が不可欠であることを示唆している。
関連論文リスト
- Diffusion Feedback Helps CLIP See Better [40.125318318373715]
対照的に、CLIP(Contrastive Language- Image Pre-Training)は、ドメインとモダリティをまたいだオープンワールド表現の抽象化に優れている。
CLIPには、方向、量、色、構造をほとんど区別できないような、深刻な視覚的欠点がある。
自己教師付き拡散プロセスによって視覚的欠点を克服するCLIPモデルに対する後学習手法を提案する。
論文 参考訳(メタデータ) (2024-07-29T17:00:09Z) - X-Former: Unifying Contrastive and Reconstruction Learning for MLLMs [49.30255148577368]
X-FormerはCLとMIMの相補的な強度を利用するために設計された軽量トランスフォーマーモジュールである。
X-Formerは、2つの凍結した視覚エンコーダから視覚言語表現学習とマルチモーダル・マルチモーダル生成学習をブートストラップする。
さらに、凍結したLLMから視覚から言語への生成学習をブートストラップし、X-Formerの視覚的特徴をLLMで解釈できるようにする。
論文 参考訳(メタデータ) (2024-07-18T18:39:54Z) - Cambrian-1: A Fully Open, Vision-Centric Exploration of Multimodal LLMs [56.391404083287235]
視覚中心のアプローチで設計したマルチモーダルLLM(MLLM)のファミリーであるCambrian-1を紹介する。
本研究は,様々な視覚表現を評価するためのインタフェースとして,LLMとビジュアルインストラクションチューニングを用いた。
モデルウェイト、コード、サポートツール、データセット、詳細なインストラクションチューニングと評価のレシピを提供しています。
論文 参考訳(メタデータ) (2024-06-24T17:59:42Z) - Visualization Literacy of Multimodal Large Language Models: A Comparative Study [12.367399155606162]
MLLM(Multimodal large language model)は、MLLM(Multimodal large language model)とLLM(LLM)の固有の能力を組み合わせて、マルチモーダルコンテキストを推論する。
ビジュアライゼーションにおける最近の多くの研究は、可視化結果を理解し、解釈し、自然言語のユーザに対して視覚化の内容を説明するMLLMの能力を実証している。
本研究では,可視化リテラシーの概念を利用してMLLMを評価することにより,そのギャップを埋めることを目的とする。
論文 参考訳(メタデータ) (2024-06-24T17:52:16Z) - Machine Vision Therapy: Multimodal Large Language Models Can Enhance Visual Robustness via Denoising In-Context Learning [67.0609518552321]
本稿では,視覚モデルからノイズ予測を補正するマシンビジョンセラピーを提案する。
復調ラベルを微調整することにより、教師なしの方法で学習モデルの性能を高めることができる。
論文 参考訳(メタデータ) (2023-12-05T07:29:14Z) - Behind the Magic, MERLIM: Multi-modal Evaluation Benchmark for Large Image-Language Models [50.653838482083614]
本稿では,IT-LVLMの基本的なコンピュータビジョンタスクにおける能力を評価するために,スケーラブルなテストベッドを提案する。
MERLIMには300K以上の画像検索ペアが含まれており、IT-LVLMにおけるクロスモーダルな"ハロシン化"イベントの検出に重点を置いている。
論文 参考訳(メタデータ) (2023-12-03T16:39:36Z) - Large Language Models are Visual Reasoning Coordinators [144.67558375045755]
視覚的推論のために複数の視覚言語モデルを協調する新しいパラダイムを提案する。
提案手法は,視覚的質問応答における最先端性能を実現するため,命令チューニングの変種であるCola-FTを提案する。
また,テキスト内学習の変種であるCola-Zeroは,ゼロおよび少数ショット設定で競合性能を示すことを示す。
論文 参考訳(メタデータ) (2023-10-23T17:59:31Z) - From CLIP to DINO: Visual Encoders Shout in Multi-modal Large Language
Models [36.41816380074965]
大規模言語モデル(MLLM)における視覚エンコーダの有効性について検討する。
以上の結果から,CLIPの浅層構造は,接地や領域理解といったきめ細かいタスクに特に有利であることがわかった。
我々は,CLIPとDINOをMergingと統合したシンプルな機能統合戦略であるCOMMを提案する。
論文 参考訳(メタデータ) (2023-10-13T02:41:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。