論文の概要: A Universal Knowledge Model and Cognitive Architecture for Prototyping
AGI
- arxiv url: http://arxiv.org/abs/2401.06256v3
- Date: Sat, 27 Jan 2024 19:13:03 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-30 20:36:32.417216
- Title: A Universal Knowledge Model and Cognitive Architecture for Prototyping
AGI
- Title(参考訳): プロトタイピングAGIのためのユニバーサル知識モデルと認知アーキテクチャ
- Authors: Artem Sukhobokov, Evgeny Belousov, Danila Gromozdov, Anna Zenger and
Ilya Popov
- Abstract要約: 一般人工知能(AGI)構築のための42の認知アーキテクチャ
AGIに近づいたインテリジェントシステムのための新しい認知アーキテクチャを提案する。
アーキテクチャの枠組みにおける重要な解の1つとして、知識表現の普遍的な方法が提案されている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The article identified 42 cognitive architectures for creating general
artificial intelligence (AGI) and proposed a set of interrelated functional
blocks that an agent approaching AGI in its capabilities should possess. Since
the required set of blocks is not found in any of the existing architectures,
the article proposes a new cognitive architecture for intelligent systems
approaching AGI in their capabilities. As one of the key solutions within the
framework of the architecture, a universal method of knowledge representation
is proposed, which allows combining various non-formalized, partially and fully
formalized methods of knowledge representation in a single knowledge base, such
as texts in natural languages, images, audio and video recordings, graphs,
algorithms, databases, neural networks, knowledge graphs, ontologies, frames,
essence-property-relation models, production systems, predicate calculus
models, conceptual models, and others. To combine and structure various
fragments of knowledge, archigraph models are used, constructed as a
development of annotated metagraphs. As components, the cognitive architecture
being developed includes machine consciousness, machine subconsciousness,
blocks of interaction with the external environment, a goal management block,
an emotional control system, a block of social interaction, a block of
reflection, an ethics block and a worldview block, a learning block, a
monitoring block, blocks of statement and solving problems, self-organization
and meta learning block.
- Abstract(参考訳): この記事では、一般人工知能(AGI)を作成するための42の認知アーキテクチャを特定し、AGIに近づくエージェントが持つべき機能ブロックのセットを提案する。
既存のアーキテクチャのどれにも要求されるブロックセットは見つからないため、この記事では、AGIに近づいたインテリジェントシステムのための新しい認知アーキテクチャを提案する。
As one of the key solutions within the framework of the architecture, a universal method of knowledge representation is proposed, which allows combining various non-formalized, partially and fully formalized methods of knowledge representation in a single knowledge base, such as texts in natural languages, images, audio and video recordings, graphs, algorithms, databases, neural networks, knowledge graphs, ontologies, frames, essence-property-relation models, production systems, predicate calculus models, conceptual models, and others.
様々な知識の断片を組み合わせ、構成するために、注釈付きメタグラフの開発のために構築されたアーキグラフモデルを使用する。
開発中の認知アーキテクチャは、機械意識、機械意識、外部環境との相互作用ブロック、ゴール管理ブロック、感情制御システム、社会的相互作用ブロック、リフレクションブロック、倫理ブロック、ワールドビューブロック、学習ブロック、モニタリングブロック、ステートメントと問題解決ブロック、自己組織化とメタ学習ブロックを含む。
関連論文リスト
- Neurosymbolic Graph Enrichment for Grounded World Models [47.92947508449361]
複雑な問題に対処するために, LLM の反応性を向上し, 活用するための新しいアプローチを提案する。
我々は,大規模言語モデルの強みと構造的意味表現を組み合わせた,多モーダルで知識を付加した意味の形式表現を作成する。
非構造化言語モデルと形式的意味構造とのギャップを埋めることで、自然言語理解と推論における複雑な問題に対処するための新たな道を開く。
論文 参考訳(メタデータ) (2024-11-19T17:23:55Z) - Categorical semiotics: Foundations for Knowledge Integration [0.0]
ディープラーニングアーキテクチャの定義と分析のための包括的なフレームワークを開発するという課題に取り組む。
我々の方法論は、ファジィ集合の宇宙の中で解釈されるエルレスマンのスケッチに類似したグラフィカル構造を用いる。
このアプローチは、決定論的および非決定論的ニューラルネットワーク設計の両方をエレガントに包含する統一理論を提供する。
論文 参考訳(メタデータ) (2024-04-01T23:19:01Z) - Foundational Models Defining a New Era in Vision: A Survey and Outlook [151.49434496615427]
視覚シーンの構成的性質を観察し、推論する視覚システムは、我々の世界を理解するのに不可欠である。
モデルは、このようなモダリティと大規模なトレーニングデータとのギャップを埋めることを学び、コンテキスト推論、一般化、テスト時の迅速な機能を容易にした。
このようなモデルの出力は、例えば、バウンディングボックスを設けて特定のオブジェクトをセグメント化したり、画像や映像シーンについて質問したり、言語命令でロボットの動作を操作することで対話的な対話を行うなど、リトレーニングすることなく、人為的なプロンプトによって変更することができる。
論文 参考訳(メタデータ) (2023-07-25T17:59:18Z) - A Compositional Approach to Creating Architecture Frameworks with an
Application to Distributed AI Systems [16.690434072032176]
構成的思考が複雑なシステムのためのアーキテクチャフレームワークの作成と管理のルールをいかに提供できるかを示す。
論文の目的は、AIシステム特有の視点やアーキテクチャモデルを提供することではなく、既存の、または新しく作成された視点で一貫したフレームワークを構築する方法についてのガイドラインを提供することである。
論文 参考訳(メタデータ) (2022-12-27T18:05:02Z) - Analogical Concept Memory for Architectures Implementing the Common
Model of Cognition [1.9417302920173825]
そこで我々は,Soar の新たなアナログ概念メモリを提案し,宣言的長期記憶の現在のシステムを強化した。
提案したメモリに実装されたアナログ学習手法は,多様な新しい概念を迅速に学習できることを実証する。
論文 参考訳(メタデータ) (2022-10-21T04:39:07Z) - Kernel Based Cognitive Architecture for Autonomous Agents [91.3755431537592]
本稿では,認知機能構築への進化的アプローチについて考察する。
本稿では,シンボル創発問題に基づくエージェントの進化を保証する認知アーキテクチャについて考察する。
論文 参考訳(メタデータ) (2022-07-02T12:41:32Z) - AIGenC: An AI generalisation model via creativity [1.933681537640272]
本稿では,創造性に関する認知理論に触発された計算モデル(AIGenC)を紹介する。
人工エージェントが変換可能な表現を学習、使用、生成するために必要なコンポーネントを配置する。
本稿では, 人工エージェントの配当効率を向上するモデルの有効性について論じる。
論文 参考訳(メタデータ) (2022-05-19T17:43:31Z) - MRKL Systems: A modular, neuro-symbolic architecture that combines large
language models, external knowledge sources and discrete reasoning [50.40151403246205]
巨大な言語モデル(LM)は、自然言語ベースの知識タスクのゲートウェイとして機能する、AIの新しい時代を支えている。
離散的な知識と推論モジュールによって補完される、複数のニューラルモデルによる柔軟なアーキテクチャを定義する。
本稿では,MRKL(Modular Reasoning, Knowledge and Language)システムと呼ばれる,このニューロシンボリックアーキテクチャについて述べる。
論文 参考訳(メタデータ) (2022-05-01T11:01:28Z) - Towards a Predictive Processing Implementation of the Common Model of
Cognition [79.63867412771461]
本稿では,ニューラル生成符号化とホログラフィック連想記憶に基づく認知モデルの実装について述べる。
提案システムは,多様なタスクから継続的に学習し,大規模に人的パフォーマンスをモデル化するエージェントを開発するための基盤となる。
論文 参考訳(メタデータ) (2021-05-15T22:55:23Z) - Towards an Interface Description Template for AI-enabled Systems [77.34726150561087]
再利用(Reuse)は、システムアーキテクチャを既存のコンポーネントでインスタンス化しようとする、一般的なシステムアーキテクチャのアプローチである。
現在、コンポーネントが当初目的としていたものと異なるシステムで運用する可搬性を評価するために必要な情報の選択をガイドするフレームワークは存在しない。
我々は、AI対応コンポーネントの主情報をキャプチャするインターフェイス記述テンプレートの確立に向けて、現在進行中の作業について述べる。
論文 参考訳(メタデータ) (2020-07-13T20:30:26Z) - Characterizing an Analogical Concept Memory for Architectures
Implementing the Common Model of Cognition [1.468003557277553]
そこで我々は,Soar の新たなアナログ概念メモリを提案し,宣言的長期記憶の現在のシステムを強化した。
提案したメモリに実装されたアナログ学習手法は,多様な新しい概念を迅速に学習できることを実証する。
論文 参考訳(メタデータ) (2020-06-02T21:54:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。