論文の概要: An ontology alignment method with user intervention using compact
differential evolution with adaptive parameter control
- arxiv url: http://arxiv.org/abs/2401.06337v2
- Date: Thu, 18 Jan 2024 13:29:42 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-19 19:08:10.354361
- Title: An ontology alignment method with user intervention using compact
differential evolution with adaptive parameter control
- Title(参考訳): 適応パラメータ制御を用いたコンパクト微分進化を用いたユーザ介入によるオントロジアライメント法
- Authors: Zhaoming Lv
- Abstract要約: 提案手法は非インタラクティブ手法と比較してアライメント品質を向上させることができる。
OAEIの最先端手法と比較すると,提案アルゴリズムは誤り率に比較して高い性能を示した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: User interaction is one of the most effective ways to improve the ontology
alignment quality. However, this approach faces the challenge of how users can
participate effectively in the matching process. To solve this challenge. In
this paper, an interactive ontology alignment approach using compact
differential evolution algorithm with adaptive parameter control (IOACDE) is
proposed. In this method, the ontology alignment process is modeled as an
interactive optimization problem and users are allowed to intervene in matching
in two ways. One is that the mapping suggestions generated by IOACDE as a
complete candidate alignment is evaluated by user during optimization process.
The other is that the user ameliorates the alignment results by evaluating
single mapping after the automatic matching process. To demonstrate the
effectiveness of the proposed algorithm, the neural embedding model and K
nearest neighbor (KNN) is employed to simulate user for the ontologies of the
real world. The experimental results show that the proposed interactive
approach can improve the alignment quality compared to the non-interactive.
Compared with the state-of-the-art methods from OAEI, the results show that the
proposed algorithm has a better performance under the same error rate.
- Abstract(参考訳): ユーザインタラクションは、オントロジーのアライメント品質を改善する最も効果的な方法の1つです。
しかし、このアプローチは、ユーザーがマッチングプロセスに効果的に参加できるという課題に直面している。
この課題を解決するためです
本稿では,適応パラメータ制御(IOACDE)を用いたコンパクト微分進化アルゴリズムを用いた対話型オントロジーアライメント手法を提案する。
本手法では,オントロジーアライメント処理を対話的最適化問題としてモデル化し,ユーザが2つの方法でマッチングを行うことができる。
ioacdeが完全な候補アライメントとして生成したマッピング提案は、最適化プロセス中にユーザによって評価される。
もうひとつは、自動マッチング処理後の単一マッピングを評価し、アライメント結果を改善することである。
提案アルゴリズムの有効性を実証するために,実世界のオントロジーのユーザをシミュレートするために,ニューラル埋め込みモデルとK近辺モデル(KNN)を用いる。
実験の結果,提案手法は非対話性に比べてアライメント品質が向上することがわかった。
OAEIの最先端手法と比較すると,提案アルゴリズムは誤り率に比較して高い性能を示した。
関連論文リスト
- Faster WIND: Accelerating Iterative Best-of-$N$ Distillation for LLM Alignment [81.84950252537618]
本稿では,反復的BONDと自己プレイアライメントの統一的なゲーム理論接続を明らかにする。
WINレート支配(WIN rate Dominance, WIND)という新しいフレームワークを構築し, 正規化利率支配最適化のためのアルゴリズムを多数提案する。
論文 参考訳(メタデータ) (2024-10-28T04:47:39Z) - Model Uncertainty in Evolutionary Optimization and Bayesian Optimization: A Comparative Analysis [5.6787965501364335]
ブラックボックス最適化問題は、多くの現実世界のアプリケーションで一般的な問題である。
これらの問題はインプット・アウトプット・インタラクションを通じて内部動作へのアクセスなしに最適化する必要がある。
このような問題に対処するために2つの広く使われている勾配のない最適化手法が用いられている。
本稿では,2つの手法間のモデル不確実性の類似点と相違点を明らかにすることを目的とする。
論文 参考訳(メタデータ) (2024-03-21T13:59:19Z) - Reinforcement Learning Methods for Wordle: A POMDP/Adaptive Control
Approach [0.3093890460224435]
我々は、新しい強化学習手法を用いて、人気のあるWordleパズルの解法に対処する。
Wordleパズルでは、比較的控えめな計算コストで最適に近いオンラインソリューション戦略が得られる。
論文 参考訳(メタデータ) (2022-11-15T03:46:41Z) - ECO-TR: Efficient Correspondences Finding Via Coarse-to-Fine Refinement [80.94378602238432]
粗大な処理で対応性を見出すことにより、ECO-TR(Correspondence Efficient Transformer)と呼ばれる効率的な構造を提案する。
これを実現するために、複数の変圧器ブロックは段階的に連結され、予測された座標を徐々に洗練する。
種々のスパースタスクと密マッチングタスクの実験は、既存の最先端技術に対する効率性と有効性の両方において、我々の手法の優位性を実証している。
論文 参考訳(メタデータ) (2022-09-25T13:05:33Z) - An Actor-Critic Method for Simulation-Based Optimization [6.261751912603047]
実現可能な空間から最適な設計を選択するためのシミュレーションに基づく最適化問題に焦点をあてる。
政策探索問題としてサンプリングプロセスを定式化し、強化学習(RL)の観点から解を求める。
いくつかの実験は提案アルゴリズムの有効性を検証するために設計されている。
論文 参考訳(メタデータ) (2021-10-31T09:04:23Z) - Adaptive Sampling for Heterogeneous Rank Aggregation from Noisy Pairwise
Comparisons [85.5955376526419]
ランキングアグリゲーション問題では、各項目を比較する際に、様々な精度レベルが示される。
本稿では,ノイズのあるペアワイズ比較によってアイテムのランクを推定する,除去に基づくアクティブサンプリング戦略を提案する。
提案アルゴリズムは,商品の真のランキングを高い確率で返却できることを示す。
論文 参考訳(メタデータ) (2021-10-08T13:51:55Z) - Scalable Personalised Item Ranking through Parametric Density Estimation [53.44830012414444]
暗黙のフィードバックから学ぶことは、一流問題の難しい性質のために困難です。
ほとんどの従来の方法は、一級問題に対処するためにペアワイズランキングアプローチとネガティブサンプラーを使用します。
本論文では,ポイントワイズと同等の収束速度を実現する学習対ランクアプローチを提案する。
論文 参考訳(メタデータ) (2021-05-11T03:38:16Z) - Meta-Regularization: An Approach to Adaptive Choice of the Learning Rate
in Gradient Descent [20.47598828422897]
第一次下降法における学習率の適応的選択のための新しいアプローチであるtextit-Meta-Regularizationを提案する。
本手法は,正規化項を追加して目的関数を修正し,共同処理パラメータをキャストする。
論文 参考訳(メタデータ) (2021-04-12T13:13:34Z) - DEALIO: Data-Efficient Adversarial Learning for Imitation from
Observation [57.358212277226315]
観察ifoからの模倣学習において、学習エージェントは、実演者の生成した制御信号にアクセスせずに、実演行動の観察のみを用いて実演エージェントを模倣しようとする。
近年、逆模倣学習に基づく手法は、ifO問題に対する最先端のパフォーマンスをもたらすが、データ非効率でモデルなしの強化学習アルゴリズムに依存するため、サンプルの複雑さに悩まされることが多い。
この問題は、サンプルの収集が時間、エネルギー、およびリスクの面で高いコストを被る可能性がある現実世界の設定に展開することは非現実的です。
よりデータ効率の高いifOアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-03-31T23:46:32Z) - On the implementation of a global optimization method for mixed-variable
problems [0.30458514384586394]
このアルゴリズムは、グットマンの放射基底関数と、レジスとシューメーカーの計量応答面法に基づいている。
これら2つのアルゴリズムの一般化と改良を目的としたいくつかの修正を提案する。
論文 参考訳(メタデータ) (2020-09-04T13:36:56Z) - EOS: a Parallel, Self-Adaptive, Multi-Population Evolutionary Algorithm
for Constrained Global Optimization [68.8204255655161]
EOSは実数値変数の制約付きおよび制約なし問題に対する大域的最適化アルゴリズムである。
これはよく知られた微分進化(DE)アルゴリズムに多くの改良を加えている。
その結果、EOSisは、最先端の単一人口自己適応Dアルゴリズムと比較して高い性能を達成可能であることが証明された。
論文 参考訳(メタデータ) (2020-07-09T10:19:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。