論文の概要: EOS: a Parallel, Self-Adaptive, Multi-Population Evolutionary Algorithm
for Constrained Global Optimization
- arxiv url: http://arxiv.org/abs/2007.04681v2
- Date: Mon, 13 Jul 2020 10:27:23 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-12 04:23:59.401055
- Title: EOS: a Parallel, Self-Adaptive, Multi-Population Evolutionary Algorithm
for Constrained Global Optimization
- Title(参考訳): EOS: 制約付きグローバル最適化のための並列・自己適応型・マルチポピュレーション進化アルゴリズム
- Authors: Lorenzo Federici, Boris Benedikter, Alessandro Zavoli
- Abstract要約: EOSは実数値変数の制約付きおよび制約なし問題に対する大域的最適化アルゴリズムである。
これはよく知られた微分進化(DE)アルゴリズムに多くの改良を加えている。
その結果、EOSisは、最先端の単一人口自己適応Dアルゴリズムと比較して高い性能を達成可能であることが証明された。
- 参考スコア(独自算出の注目度): 68.8204255655161
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents the main characteristics of the evolutionary optimization
code named EOS, Evolutionary Optimization at Sapienza, and its successful
application to challenging, real-world space trajectory optimization problems.
EOS is a global optimization algorithm for constrained and unconstrained
problems of real-valued variables. It implements a number of improvements to
the well-known Differential Evolution (DE) algorithm, namely, a self-adaptation
of the control parameters, an epidemic mechanism, a clustering technique, an
$\varepsilon$-constrained method to deal with nonlinear constraints, and a
synchronous island-model to handle multiple populations in parallel. The
results reported prove that EOSis capable of achieving increased performance
compared to state-of-the-art single-population self-adaptive DE algorithms when
applied to high-dimensional or highly-constrained space trajectory optimization
problems.
- Abstract(参考訳): 本稿では,Sapienzaにおける進化最適化(EOS)と進化最適化(Evolutionary Optimization)の主な特徴と実世界の空間軌道最適化問題への応用について述べる。
EOSは実数値変数の制約付きおよび制約なし問題に対する大域的最適化アルゴリズムである。
これはよく知られた微分進化(de)アルゴリズムの多くの改善、すなわち制御パラメータの自己適応、流行機構、クラスタリング技術、非線形制約を扱う$\varepsilon$-constrainedメソッド、並列に複数の個体群を扱う同期島モデルを実装している。
以上の結果から,高次元・高制約空間軌道最適化問題に適用した場合,最先端の自己適応型deアルゴリズムに比べて高い性能が得られることがわかった。
関連論文リスト
- Integrating Chaotic Evolutionary and Local Search Techniques in Decision Space for Enhanced Evolutionary Multi-Objective Optimization [1.8130068086063336]
本稿では,SOMMOP(Single-Objective Multi-Modal Optimization)とMOO(Multi-Objective Optimization)の両方に焦点を当てる。
SOMMOPではニッチ技術とカオス進化を統合し,ガウス突然変異を併用したパーシスタンス・クラスタリングを行った。
MOOでは,これらの手法を不確実性に基づく選択,適応的チューニングを組み込んだ包括的フレームワークに拡張し,決定論的群集に半径(R)の概念を導入する。
論文 参考訳(メタデータ) (2024-11-12T15:18:48Z) - Modified CMA-ES Algorithm for Multi-Modal Optimization: Incorporating Niching Strategies and Dynamic Adaptation Mechanism [0.03495246564946555]
本研究では,多モード最適化問題に対する共分散行列適応進化戦略 (CMA-ES) アルゴリズムを改良する。
この拡張は、複数のグローバルミニマの課題への対処、多様性の維持と複雑なフィットネスランドスケープを探索するアルゴリズムの能力の改善に焦点を当てている。
ニッチ戦略と動的適応機構を取り入れて,複数のグローバル最適化を識別・最適化するアルゴリズムの性能を向上する。
論文 参考訳(メタデータ) (2024-07-01T03:41:39Z) - Evolutionary Alternating Direction Method of Multipliers for Constrained
Multi-Objective Optimization with Unknown Constraints [17.392113376816788]
制約付き多目的最適化問題(CMOP)は、科学、工学、設計における現実世界の応用に及んでいる。
本稿では,目的関数と制約関数を分離する乗算器の交互方向法の原理に着想を得た,この種の進化的最適化フレームワークについて紹介する。
本研究の枠組みは,元の問題を2つのサブプロブレムの付加形式に再構成することで,未知の制約でCMOPに対処する。
論文 参考訳(メタデータ) (2024-01-02T00:38:20Z) - Analyzing and Enhancing the Backward-Pass Convergence of Unrolled
Optimization [50.38518771642365]
ディープネットワークにおけるコンポーネントとしての制約付き最適化モデルの統合は、多くの専門的な学習タスクに有望な進歩をもたらした。
この設定における中心的な課題は最適化問題の解によるバックプロパゲーションであり、しばしば閉形式を欠いている。
本稿では, 非線形最適化の後方通過に関する理論的知見を提供し, 特定の反復法による線形システムの解と等価であることを示す。
Folded Optimizationと呼ばれるシステムが提案され、非ローリングなソルバ実装からより効率的なバックプロパゲーションルールを構築する。
論文 参考訳(メタデータ) (2023-12-28T23:15:18Z) - Federated Conditional Stochastic Optimization [110.513884892319]
条件付き最適化は、不変学習タスク、AUPRC、AMLなど、幅広い機械学習タスクで見られる。
本稿では,分散フェデレーション学習のためのアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-10-04T01:47:37Z) - Advancements in Optimization: Adaptive Differential Evolution with
Diversification Strategy [0.0]
この研究は2次元空間において単目的最適化を採用し、複数の反復で各ベンチマーク関数上でADEDSを実行する。
ADEDSは、多くの局所最適化、プレート型、谷型、伸縮型、ノイズの多い機能を含む様々な最適化課題において、標準Dより一貫して優れている。
論文 参考訳(メタデータ) (2023-10-02T10:05:41Z) - An Empirical Evaluation of Zeroth-Order Optimization Methods on
AI-driven Molecule Optimization [78.36413169647408]
分子目的を最適化するための様々なZO最適化手法の有効性について検討する。
ZO符号に基づく勾配降下(ZO-signGD)の利点を示す。
本稿では,Guurcamol スイートから広く使用されているベンチマークタスクに対して,ZO 最適化手法の有効性を示す。
論文 参考訳(メタデータ) (2022-10-27T01:58:10Z) - Accelerating the Evolutionary Algorithms by Gaussian Process Regression
with $\epsilon$-greedy acquisition function [2.7716102039510564]
本稿では,最適化の収束を早めるために,エリート個人を推定する新しい手法を提案する。
我々の提案には、エリート個人を推定し、最適化の収束を加速する幅広い見通しがある。
論文 参考訳(メタデータ) (2022-10-13T07:56:47Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisyハイブリッド量子古典アルゴリズムは、ノイズ中間量子デバイスの使用を最大化する強力なツールである。
我々は、変分量子アルゴリズムで使用されるそのようなアンサーゼを「効率的な回路訓練」(PECT)と呼ぶ戦略を提案する。
すべてのアンサッツパラメータを一度に最適化する代わりに、PECTは一連の変分アルゴリズムを起動する。
論文 参考訳(メタデータ) (2020-10-01T18:14:11Z) - Adaptivity of Stochastic Gradient Methods for Nonconvex Optimization [71.03797261151605]
適応性は現代最適化理論において重要であるが、研究されていない性質である。
提案アルゴリズムは,PL目標に対して既存のアルゴリズムよりも優れた性能を保ちながら,PL目標に対して最適な収束性を実現することを実証した。
論文 参考訳(メタデータ) (2020-02-13T05:42:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。