論文の概要: Seek for Incantations: Towards Accurate Text-to-Image Diffusion
Synthesis through Prompt Engineering
- arxiv url: http://arxiv.org/abs/2401.06345v1
- Date: Fri, 12 Jan 2024 03:46:29 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-15 20:32:43.962742
- Title: Seek for Incantations: Towards Accurate Text-to-Image Diffusion
Synthesis through Prompt Engineering
- Title(参考訳): インセンテーションを探る:プロンプト工学による正確なテキスト・画像拡散合成を目指して
- Authors: Chang Yu, Junran Peng, Xiangyu Zhu, Zhaoxiang Zhang, Qi Tian, Zhen Lei
- Abstract要約: 本稿では,拡散モデルの適切なテキスト記述を即時学習により学習するフレームワークを提案する。
提案手法は,入力されたテキストと生成された画像とのマッチングを改善するためのプロンプトを効果的に学習することができる。
- 参考スコア(独自算出の注目度): 118.53208190209517
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The text-to-image synthesis by diffusion models has recently shown remarkable
performance in generating high-quality images. Although performs well for
simple texts, the models may get confused when faced with complex texts that
contain multiple objects or spatial relationships. To get the desired images, a
feasible way is to manually adjust the textual descriptions, i.e., narrating
the texts or adding some words, which is labor-consuming. In this paper, we
propose a framework to learn the proper textual descriptions for diffusion
models through prompt learning. By utilizing the quality guidance and the
semantic guidance derived from the pre-trained diffusion model, our method can
effectively learn the prompts to improve the matches between the input text and
the generated images. Extensive experiments and analyses have validated the
effectiveness of the proposed method.
- Abstract(参考訳): 拡散モデルによるテキストから画像への合成は、最近、高品質な画像の生成において顕著な性能を示している。
単純なテキストに対してうまく機能するが、複数のオブジェクトや空間的関係を含む複雑なテキストに直面すると、モデルは混乱する。
望まれる画像を得るためには、手動でテキスト記述、すなわちテキストのナレーションやいくつかの単語の追加を調整し、作業に費やしている。
本稿では,素早い学習を通じて拡散モデルの適切なテキスト記述を学ぶための枠組みを提案する。
本手法は,事前学習した拡散モデルから得られた品質指導と意味指導を利用することで,入力テキストと生成画像とのマッチングを改善するプロンプトを効果的に学習することができる。
広範な実験と解析により,提案手法の有効性が検証された。
関連論文リスト
- Conditional Text-to-Image Generation with Reference Guidance [81.99538302576302]
本稿では,拡散モデルを生成するために,特定の対象の視覚的ガイダンスを提供する画像の追加条件を用いて検討する。
我々は、異なる参照を取る能力を持つ安定拡散モデルを効率的に支持する、小規模のエキスパートプラグインを複数開発する。
専門的なプラグインは、すべてのタスクにおいて既存のメソッドよりも優れた結果を示し、それぞれ28.55Mのトレーニング可能なパラメータしか含まない。
論文 参考訳(メタデータ) (2024-11-22T21:38:51Z) - ARTIST: Improving the Generation of Text-rich Images with Disentangled Diffusion Models [52.23899502520261]
テキスト構造学習に焦点を当てたARTISTという新しいフレームワークを提案する。
我々は、事前訓練されたテキスト構造モデルからテキスト構造情報を同化できるように、視覚拡散モデルを微調整する。
MARIO-Evalベンチマークの実証結果は,提案手法の有効性を裏付けるものであり,様々な指標において最大15%の改善が見られた。
論文 参考訳(メタデータ) (2024-06-17T19:31:24Z) - Coherent Zero-Shot Visual Instruction Generation [15.0521272616551]
本稿では,視覚的指示を生成する際の課題に対処するための,簡単な学習不要のフレームワークを提案する。
本手法は,視覚的指示が視覚的に魅力的であることを保証するために,テキスト理解と画像生成を体系的に統合する。
実験の結果,コヒーレントで視覚的な指示を可視化できることがわかった。
論文 参考訳(メタデータ) (2024-06-06T17:59:44Z) - UDiffText: A Unified Framework for High-quality Text Synthesis in
Arbitrary Images via Character-aware Diffusion Models [25.219960711604728]
本稿では,事前学習した拡散モデルを用いたテキスト画像生成手法を提案する。
我々のアプローチは、オリジナルのCLIPエンコーダを置き換える軽量文字レベルテキストエンコーダの設計と訓練である。
推論段階の精細化プロセスを用いることで、任意に与えられた画像のテキストを合成する際に、顕著に高いシーケンス精度を実現する。
論文 参考訳(メタデータ) (2023-12-08T07:47:46Z) - Enhancing Scene Text Detectors with Realistic Text Image Synthesis Using
Diffusion Models [63.99110667987318]
DiffTextは、前景のテキストと背景の本質的な特徴をシームレスにブレンドするパイプラインです。
テキストインスタンスが少なくなると、生成したテキストイメージはテキスト検出を支援する他の合成データを一貫して上回ります。
論文 参考訳(メタデータ) (2023-11-28T06:51:28Z) - SUR-adapter: Enhancing Text-to-Image Pre-trained Diffusion Models with
Large Language Models [56.88192537044364]
本研究では,事前学習拡散モデルに対するセマンティック・アダプタ (SUR-adapter) と呼ばれる簡易なパラメータ効率の良い微調整手法を提案する。
ユーザエクスペリエンスの向上により,テキストから画像への拡散モデルの使いやすさが向上する。
論文 参考訳(メタデータ) (2023-05-09T05:48:38Z) - WordStylist: Styled Verbatim Handwritten Text Generation with Latent
Diffusion Models [8.334487584550185]
単語レベルに基づくテキスト・テキスト・コンテンツ・イメージ生成のための遅延拡散に基づく手法を提案する。
提案手法は,異なる書き手スタイルからリアルな単語画像のサンプルを生成することができる。
提案モデルでは,美的満足度の高いサンプルを作成し,テキスト認識性能の向上に寄与し,類似の文字検索スコアを実データとして得られることを示す。
論文 参考訳(メタデータ) (2023-03-29T10:19:26Z) - Direct Inversion: Optimization-Free Text-Driven Real Image Editing with
Diffusion Models [0.0]
本稿では,テキストプロンプトを介し,複雑な非厳密な編集を1つの実画像に適用する最適化フリーでゼロな微調整フレームワークを提案する。
高品質,多様性,セマンティック・コヒーレント,忠実な実画像編集において,本手法の有効性を実証する。
論文 参考訳(メタデータ) (2022-11-15T01:07:38Z) - More Control for Free! Image Synthesis with Semantic Diffusion Guidance [79.88929906247695]
制御可能な画像合成モデルは、サンプル画像からテキスト命令やガイダンスに基づいて多様な画像を作成することができる。
セマンティックな拡散誘導のための新しい統合フレームワークを導入し、言語や画像の誘導、あるいはその両方を可能にした。
FFHQとLSUNのデータセットで実験を行い、微細なテキスト誘導画像合成結果を示す。
論文 参考訳(メタデータ) (2021-12-10T18:55:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。