論文の概要: SD-MVS: Segmentation-Driven Deformation Multi-View Stereo with Spherical
Refinement and EM optimization
- arxiv url: http://arxiv.org/abs/2401.06385v1
- Date: Fri, 12 Jan 2024 05:25:57 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-15 20:19:37.571892
- Title: SD-MVS: Segmentation-Driven Deformation Multi-View Stereo with Spherical
Refinement and EM optimization
- Title(参考訳): SD-MVS:球状リファインメントとEM最適化を用いた分割駆動変形多視点ステレオ
- Authors: Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang, Zhaoqi Wang
- Abstract要約: テクスチャレス領域の3次元再構成における課題を解決するために,多視点ステレオ (SD-MVS) を導入する。
私たちは、シーン内のセグメンテーションインスタンスを区別するためにSAM(Segment Anything Model)を採用した最初の人です。
球面座標と正規点の勾配勾配と深度の画素方向探索間隔を組み合わせた独自の精細化戦略を提案する。
- 参考スコア(独自算出の注目度): 6.886220026399106
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we introduce Segmentation-Driven Deformation Multi-View Stereo
(SD-MVS), a method that can effectively tackle challenges in 3D reconstruction
of textureless areas. We are the first to adopt the Segment Anything Model
(SAM) to distinguish semantic instances in scenes and further leverage these
constraints for pixelwise patch deformation on both matching cost and
propagation. Concurrently, we propose a unique refinement strategy that
combines spherical coordinates and gradient descent on normals and pixelwise
search interval on depths, significantly improving the completeness of
reconstructed 3D model. Furthermore, we adopt the Expectation-Maximization (EM)
algorithm to alternately optimize the aggregate matching cost and
hyperparameters, effectively mitigating the problem of parameters being
excessively dependent on empirical tuning. Evaluations on the ETH3D
high-resolution multi-view stereo benchmark and the Tanks and Temples dataset
demonstrate that our method can achieve state-of-the-art results with less time
consumption.
- Abstract(参考訳): 本稿では,テクスチャレス領域の3次元再構成における課題を効果的に解決できるセグメンテーション駆動変形多視点ステレオ(sd-mvs)を提案する。
シーン内のセグメンテーションインスタンスを識別するためにSegment Anything Model(SAM)を最初に採用し、マッチングコストと伝搬の両面でピクセルワイドなパッチ変形にこれらの制約を活用する。
同時に、球面座標と正規点の勾配勾配と深さの画素方向探索間隔を組み合わせ、再構成された3次元モデルの完全性を大幅に向上する独自の洗練戦略を提案する。
さらに,アグリゲーションマッチングコストとハイパーパラメータを交互に最適化するために,期待最大化(EM)アルゴリズムを採用し,経験的チューニングに過度に依存するパラメータの問題を効果的に軽減する。
eth3d高分解能マルチビューステレオベンチマークおよびタンク・テンプルデータセットの評価により,本手法は少ない時間消費で最先端の成果が得られることを示した。
関連論文リスト
- VortSDF: 3D Modeling with Centroidal Voronoi Tesselation on Signed Distance Field [5.573454319150408]
四面体グリッド上での3次元形状特性を推定するために,明示的なSDFフィールドと浅いカラーネットワークを組み合わせた体積最適化フレームワークを提案する。
Chamfer統計による実験結果は、オブジェクト、オープンシーン、人間などの様々なシナリオにおいて、前例のない復元品質でこのアプローチを検証する。
論文 参考訳(メタデータ) (2024-07-29T09:46:39Z) - 360 Layout Estimation via Orthogonal Planes Disentanglement and Multi-view Geometric Consistency Perception [56.84921040837699]
既存のパノラマ配置推定ソリューションは、垂直圧縮されたシーケンスから部屋の境界を復元し、不正確な結果をもたらす傾向にある。
そこで本稿では,直交平面不整合ネットワーク(DOPNet)を提案し,あいまいな意味論を識別する。
また,水平深度と比表現に適した教師なし適応手法を提案する。
本手法は,単分子配置推定と多視点レイアウト推定の両タスクにおいて,他のSoTAモデルよりも優れる。
論文 参考訳(メタデータ) (2023-12-26T12:16:03Z) - RNb-NeuS: Reflectance and Normal-based Multi-View 3D Reconstruction [3.1820300989695833]
本稿では,光度ステレオにより得られる多視点反射率と正規写像を統合するための多目的パラダイムを提案する。
提案手法では, 反射率と正規度の画素ワイドな共同パラメータ化を, 放射光のベクトルとして用いた。
これは、高い曲率または低い視認性を持つ領域の詳細な3D再構成を大幅に改善する。
論文 参考訳(メタデータ) (2023-12-02T19:49:27Z) - TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo [3.6728185343140685]
テクスチャレス・アンド・コリレーティブ・リファインメント・ガイド付きマルチビューステレオ (TSAR-MVS) 法を提案する。
フィルター,精細化,セグメンテーションによる3次元再構成におけるテクスチャレス領域による課題を効果的に解決する。
ETH3D, Tanks & Temples および Strecha データセットの実験により,提案手法の優れた性能と強みが示された。
論文 参考訳(メタデータ) (2023-08-19T11:40:57Z) - Unifying Flow, Stereo and Depth Estimation [121.54066319299261]
本稿では3つの動作と3次元知覚タスクのための統一的な定式化とモデルを提案する。
これら3つのタスクを、統一された高密度対応マッチング問題として定式化する。
我々のモデルは、モデルアーキテクチャとパラメータがタスク間で共有されているため、自然にクロスタスク転送を可能にします。
論文 参考訳(メタデータ) (2022-11-10T18:59:54Z) - Extracting Triangular 3D Models, Materials, and Lighting From Images [59.33666140713829]
多視点画像観測による材料と照明の協調最適化手法を提案する。
従来のグラフィックスエンジンにデプロイ可能な,空間的に変化する材料と環境を備えたメッシュを活用します。
論文 参考訳(メタデータ) (2021-11-24T13:58:20Z) - Out-of-Domain Human Mesh Reconstruction via Dynamic Bilevel Online
Adaptation [87.85851771425325]
我々は、人間のメッシュ再構成モデルをドメイン外ストリーミングビデオに適用する際の新しい問題を考える。
オンライン適応によってこの問題に対処し、テスト中のモデルのバイアスを徐々に修正します。
動的バイレベルオンライン適応アルゴリズム(DynaBOA)を提案する。
論文 参考訳(メタデータ) (2021-11-07T07:23:24Z) - Neural Radiance Fields Approach to Deep Multi-View Photometric Stereo [103.08512487830669]
多視点測光ステレオ問題(MVPS)に対する現代的な解法を提案する。
我々は、光度ステレオ(PS)画像形成モデルを用いて表面配向を取得し、それを多視点のニューラルラディアンス場表現とブレンドして物体の表面形状を復元する。
本手法は,多視点画像のニューラルレンダリングを行い,深部光度ステレオネットワークによって推定される表面の正規性を活用している。
論文 参考訳(メタデータ) (2021-10-11T20:20:03Z) - AA-RMVSNet: Adaptive Aggregation Recurrent Multi-view Stereo Network [8.127449025802436]
本稿では,AA-RMVSNetというアダプティブアグリゲーションを備えた長短期記憶(LSTM)に基づく,新しいマルチビューステレオネットワークを提案する。
まず、コンテキスト認識の畳み込みとマルチスケールアグリゲーションを用いて、画像の特徴を適応的に抽出するビュー内アグリゲーションモジュールを提案する。
本稿では,すべてのビューにおいて,より整合性のあるペアを保存可能な,適応的なピクセルワイドビューアグリゲーションのためのビュー間コストボリュームアグリゲーションモジュールを提案する。
論文 参考訳(メタデータ) (2021-08-09T06:10:48Z) - SMD-Nets: Stereo Mixture Density Networks [68.56947049719936]
SMD-Nets(Stereo Mixture Density Networks)は、幅広い2Dおよび3Dアーキテクチャに対応したシンプルで効果的な学習フレームワークです。
具体的には,バイモーダル混合密度を出力表現として活用し,不連続近傍の鋭く正確な不一致推定を可能にすることを示す。
我々は8Mpx解像度のステレオペアと現実世界のステレオデータセットからなる、新しい高解像度でリアルな合成ステレオデータセットに関する包括的な実験を行う。
論文 参考訳(メタデータ) (2021-04-08T16:15:46Z) - Real-time Dense Reconstruction of Tissue Surface from Stereo Optical
Video [10.181846237133167]
立体光学ビデオから組織表面の高密度3次元モデル(3次元)をリアルタイムに再構成する手法を提案する。
まずステレオマッチングを用いてビデオフレームから3D情報を抽出し,再構成した3Dモデルをモザイクする。
2mm未満の精度で高分解能テクスチャを有する復元3Dモデルについて, 生体内および生体内データによる実験結果を得た。
論文 参考訳(メタデータ) (2020-07-16T19:14:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。