Mission: Impossible Language Models
- URL: http://arxiv.org/abs/2401.06416v2
- Date: Fri, 2 Aug 2024 21:59:03 GMT
- Title: Mission: Impossible Language Models
- Authors: Julie Kallini, Isabel Papadimitriou, Richard Futrell, Kyle Mahowald, Christopher Potts,
- Abstract summary: We develop a set of synthetic impossible languages of differing complexity.
At one end are languages that are inherently impossible, such as random and irreversible shuffles of English words.
At the other end are languages that may not be intuitively impossible but are often considered so in linguistics.
- Score: 29.249131112359503
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Chomsky and others have very directly claimed that large language models (LLMs) are equally capable of learning languages that are possible and impossible for humans to learn. However, there is very little published experimental evidence to support such a claim. Here, we develop a set of synthetic impossible languages of differing complexity, each designed by systematically altering English data with unnatural word orders and grammar rules. These languages lie on an impossibility continuum: at one end are languages that are inherently impossible, such as random and irreversible shuffles of English words, and on the other, languages that may not be intuitively impossible but are often considered so in linguistics, particularly those with rules based on counting word positions. We report on a wide range of evaluations to assess the capacity of GPT-2 small models to learn these uncontroversially impossible languages, and crucially, we perform these assessments at various stages throughout training to compare the learning process for each language. Our core finding is that GPT-2 struggles to learn impossible languages when compared to English as a control, challenging the core claim. More importantly, we hope our approach opens up a productive line of inquiry in which different LLM architectures are tested on a variety of impossible languages in an effort to learn more about how LLMs can be used as tools for these cognitive and typological investigations.
Related papers
- Comparative Study of Multilingual Idioms and Similes in Large Language Models [4.581124233698535]
This study explores the effectiveness of prompt engineering strategies, including chain-of-thought, few-shot, and English translation prompts.
We extend the language of these datasets to Persian as well by building two new evaluation sets.
Our findings reveal that while prompt engineering methods are generally effective, their success varies by figurative type, language, and model.
arXiv Detail & Related papers (2024-10-21T19:40:05Z) - Kallini et al. (2024) do not compare impossible languages with constituency-based ones [0.0]
A central goal of linguistic theory is to find a characterization of the notion "possible human language"
Recent large language models (LLMs) in NLP applications arguably raises the possibility that LLMs might be computational devices that meet this goal.
I explain the confound and suggest some ways forward towards constructing a comparison that appropriately tests the underlying issue.
arXiv Detail & Related papers (2024-10-16T06:16:30Z) - Understanding and Mitigating Language Confusion in LLMs [76.96033035093204]
We evaluate 15 typologically diverse languages with existing and newly-created English and multilingual prompts.
We find that Llama Instruct and Mistral models exhibit high degrees of language confusion.
We find that language confusion can be partially mitigated via few-shot prompting, multilingual SFT and preference tuning.
arXiv Detail & Related papers (2024-06-28T17:03:51Z) - The Role of Language Imbalance in Cross-lingual Generalisation: Insights from Cloned Language Experiments [57.273662221547056]
In this study, we investigate an unintuitive novel driver of cross-lingual generalisation: language imbalance.
We observe that the existence of a predominant language during training boosts the performance of less frequent languages.
As we extend our analysis to real languages, we find that infrequent languages still benefit from frequent ones, yet whether language imbalance causes cross-lingual generalisation there is not conclusive.
arXiv Detail & Related papers (2024-04-11T17:58:05Z) - MLaKE: Multilingual Knowledge Editing Benchmark for Large Language Models [65.10456412127405]
MLaKE is a benchmark for the adaptability of knowledge editing methods across five languages.
MLaKE aggregates fact chains from Wikipedia across languages and generates questions in both free-form and multiple-choice.
We evaluate the multilingual knowledge editing generalization capabilities of existing methods on MLaKE.
arXiv Detail & Related papers (2024-04-07T15:23:28Z) - A Computational Model for the Assessment of Mutual Intelligibility Among
Closely Related Languages [1.5773159234875098]
Closely related languages show linguistic similarities that allow speakers of one language to understand speakers of another language without having actively learned it.
Mutual intelligibility varies in degree and is typically tested in psycholinguistic experiments.
We propose a computer-assisted method using the Linear Discriminative Learner to approximate the cognitive processes by which humans learn languages.
arXiv Detail & Related papers (2024-02-05T11:32:13Z) - Counterfactually Probing Language Identity in Multilingual Models [15.260518230218414]
We use AlterRep, a method of counterfactual probing, to explore the internal structure of multilingual models.
We find that, given a template in Language X, pushing towards Language Y systematically increases the probability of Language Y words.
arXiv Detail & Related papers (2023-10-29T01:21:36Z) - Cross-Lingual Ability of Multilingual Masked Language Models: A Study of
Language Structure [54.01613740115601]
We study three language properties: constituent order, composition and word co-occurrence.
Our main conclusion is that the contribution of constituent order and word co-occurrence is limited, while the composition is more crucial to the success of cross-linguistic transfer.
arXiv Detail & Related papers (2022-03-16T07:09:35Z) - Discovering Representation Sprachbund For Multilingual Pre-Training [139.05668687865688]
We generate language representation from multilingual pre-trained models and conduct linguistic analysis.
We cluster all the target languages into multiple groups and name each group as a representation sprachbund.
Experiments are conducted on cross-lingual benchmarks and significant improvements are achieved compared to strong baselines.
arXiv Detail & Related papers (2021-09-01T09:32:06Z) - AM2iCo: Evaluating Word Meaning in Context across Low-ResourceLanguages
with Adversarial Examples [51.048234591165155]
We present AM2iCo, Adversarial and Multilingual Meaning in Context.
It aims to faithfully assess the ability of state-of-the-art (SotA) representation models to understand the identity of word meaning in cross-lingual contexts.
Results reveal that current SotA pretrained encoders substantially lag behind human performance.
arXiv Detail & Related papers (2021-04-17T20:23:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.