論文の概要: BOK-VQA: Bilingual outside Knowledge-Based Visual Question Answering via Graph Representation Pretraining
- arxiv url: http://arxiv.org/abs/2401.06443v2
- Date: Fri, 15 Mar 2024 07:17:10 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-18 22:33:38.336701
- Title: BOK-VQA: Bilingual outside Knowledge-Based Visual Question Answering via Graph Representation Pretraining
- Title(参考訳): BOK-VQA:グラフ表現による二言語外知識に基づく視覚質問応答
- Authors: Minjun Kim, Seungwoo Song, Youhan Lee, Haneol Jang, Kyungtae Lim,
- Abstract要約: 本稿では,多言語化に拡張可能なバイリンガル外部知識VQAデータセットを提案する。
提案したデータには、17K画像、韓国語と英語の問合せ対、問合せ内容に関連する知識情報の280Kインスタンスが含まれる。
また,BOK-VQAデータの知識情報をグラフ埋め込み形式で事前学習することにより,知識情報をVQAシステムに効果的に注入できるフレームワークを提案する。
- 参考スコア(独自算出の注目度): 5.032291939291926
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The current research direction in generative models, such as the recently developed GPT4, aims to find relevant knowledge information for multimodal and multilingual inputs to provide answers. Under these research circumstances, the demand for multilingual evaluation of visual question answering (VQA) tasks, a representative task of multimodal systems, has increased. Accordingly, we propose a bilingual outside-knowledge VQA (BOK-VQA) dataset in this study that can be extended to multilingualism. The proposed data include 17K images, 17K question-answer pairs for both Korean and English and 280K instances of knowledge information related to question-answer content. We also present a framework that can effectively inject knowledge information into a VQA system by pretraining the knowledge information of BOK-VQA data in the form of graph embeddings. Finally, through in-depth analysis, we demonstrated the actual effect of the knowledge information contained in the constructed training data on VQA.
- Abstract(参考訳): 最近開発されたGPT4のような生成モデルにおける現在の研究方向は、複数のモーダル入力と多言語入力の関連知識情報を見つけることを目的としている。
これらの研究状況下では,マルチモーダルシステムの代表的な課題である視覚的質問応答(VQA)タスクの多言語評価の需要が高まっている。
そこで本研究では,多言語に拡張可能な二言語外部知識VQA(BOK-VQA)データセットを提案する。
提案したデータには、17K画像、韓国語と英語の問合せ対、問合せ内容に関連する知識情報の280Kインスタンスが含まれる。
また,BOK-VQAデータの知識情報をグラフ埋め込み形式で事前学習することにより,知識情報をVQAシステムに効果的に注入できるフレームワークを提案する。
最後に,詳細な分析を通じて,構築した学習データに含まれる知識情報がVQAに与える影響を実演した。
関連論文リスト
- Natural Language Understanding and Inference with MLLM in Visual Question Answering: A Survey [17.33078069581465]
VQA(Visual Question Answering)は、自然言語処理とコンピュータビジョン技術を組み合わせた課題である。
この調査は、画像とテキストの自然言語理解の最新の合成を提供する。
論文 参考訳(メタデータ) (2024-11-26T16:21:03Z) - Disentangling Knowledge-based and Visual Reasoning by Question Decomposition in KB-VQA [19.6585442152102]
本稿では,知識に基づく視覚的問合せ問題について検討し,その解を求めるためには,モデルが視覚的モダリティに根ざす必要があることを示した。
我々の研究は、複雑な質問をいくつかの単純な質問に置き換えることで、画像からより関連性の高い情報を抽出できることを示した。
論文 参考訳(メタデータ) (2024-06-27T02:19:38Z) - Precision Empowers, Excess Distracts: Visual Question Answering With Dynamically Infused Knowledge In Language Models [36.56689822791777]
KBVQA (Knowledge-Based Visual Question Answering) は、外部知識と質問に答える画像を追加することで、この概念を前進させる。
本研究の主な貢献は、動的トリプル抽出法を用いて知識グラフから抽出した外部知識を組み込むことにより、質問を強化することである。
知識に富んだ我々のモデルは,3種類のKBVQAデータセット上での最先端技術よりも,Exact Match Scoreの平均4.75%向上を示す。
論文 参考訳(メタデータ) (2024-06-14T13:07:46Z) - Language Guided Visual Question Answering: Elevate Your Multimodal
Language Model Using Knowledge-Enriched Prompts [54.072432123447854]
視覚的質問応答(VQA)は、画像に関する質問に答えるタスクである。
疑問に答えるには、常識知識、世界知識、イメージに存在しないアイデアや概念についての推論が必要である。
本稿では,論理文や画像キャプション,シーングラフなどの形式で言語指導(LG)を用いて,より正確に質問に答えるフレームワークを提案する。
論文 参考訳(メタデータ) (2023-10-31T03:54:11Z) - Cross-Lingual Question Answering over Knowledge Base as Reading
Comprehension [61.079852289005025]
知識ベース(xKBQA)に対する言語間質問応答は、提供された知識ベースとは異なる言語での質問に答えることを目的としている。
xKBQAが直面する大きな課題の1つは、データアノテーションのコストが高いことである。
読解パラダイムにおけるxKBQAの新しいアプローチを提案する。
論文 参考訳(メタデータ) (2023-02-26T05:52:52Z) - A-OKVQA: A Benchmark for Visual Question Answering using World Knowledge [39.788346536244504]
A-OKVQAは、約25万の質問からなるクラウドソーシングデータセットである。
我々は、この新たなデータセットの可能性について、その内容の詳細な分析を通して示す。
論文 参考訳(メタデータ) (2022-06-03T17:52:27Z) - REVIVE: Regional Visual Representation Matters in Knowledge-Based Visual
Question Answering [75.53187719777812]
本稿では,知識に基づく視覚的質問応答(VQA)における視覚表現を再考する。
本稿では,対象領域の明示的な情報を活用するための知識に基づく新しいVQA手法REVIVEを提案する。
我々は,新しい最先端性能,すなわち58.0%の精度を実現し,従来の最先端手法を大きなマージンで上回った。
論文 参考訳(メタデータ) (2022-06-02T17:59:56Z) - Contextualized Knowledge-aware Attentive Neural Network: Enhancing
Answer Selection with Knowledge [77.77684299758494]
ナレッジグラフ(KG)による外部知識による回答選択モデル向上のアプローチを幅広く検討しています。
まず、KGの外部知識とテキスト情報との密接な相互作用を考慮し、QA文表現を学習するコンテキスト知識相互作用学習フレームワークであるナレッジアウェアニューラルネットワーク(KNN)を紹介します。
KG情報の多様性と複雑性に対処するために, カスタマイズされたグラフ畳み込みネットワーク (GCN) を介して構造情報を用いた知識表現学習を改善し, コンテキストベースおよび知識ベースの文表現を総合的に学習する コンテキスト型知識認識型アテンシブニューラルネットワーク (CKANN) を提案する。
論文 参考訳(メタデータ) (2021-04-12T05:52:20Z) - KRISP: Integrating Implicit and Symbolic Knowledge for Open-Domain
Knowledge-Based VQA [107.7091094498848]
VQAの最も難しい質問の1つは、質問に答えるために画像に存在しない外部の知識を必要とする場合です。
本研究では,解答に必要な知識が与えられたり記入されたりしないオープンドメイン知識を,トレーニング時やテスト時にも検討する。
知識表現と推論には2つのタイプがあります。
まず、トランスベースのモデルで教師なし言語事前トレーニングと教師付きトレーニングデータから効果的に学ぶことができる暗黙的な知識。
論文 参考訳(メタデータ) (2020-12-20T20:13:02Z) - Knowledge-Routed Visual Question Reasoning: Challenges for Deep
Representation Embedding [140.5911760063681]
VQAモデル評価のためのナレッジルーティング視覚質問推論という新しいデータセットを提案する。
視覚ゲノムシーングラフと外部知識ベースの両方に基づいて,制御プログラムを用いて質問応答対を生成する。
論文 参考訳(メタデータ) (2020-12-14T00:33:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。