Expected Shapley-Like Scores of Boolean Functions: Complexity and Applications to Probabilistic Databases
- URL: http://arxiv.org/abs/2401.06493v2
- Date: Tue, 16 Apr 2024 12:16:02 GMT
- Title: Expected Shapley-Like Scores of Boolean Functions: Complexity and Applications to Probabilistic Databases
- Authors: Pratik Karmakar, Mikaël Monet, Pierre Senellart, Stéphane Bressan,
- Abstract summary: We adapt Shapley-like scores to probabilistic settings, the objective being to compute their expected value.
We show that the computations of expected Shapley values and of the expected values of Boolean functions are interreducible in time.
We present applications to databases through database provenance, and an effective implementation of this algorithm within the Provable system.
- Score: 3.386124605656362
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Shapley values, originating in game theory and increasingly prominent in explainable AI, have been proposed to assess the contribution of facts in query answering over databases, along with other similar power indices such as Banzhaf values. In this work we adapt these Shapley-like scores to probabilistic settings, the objective being to compute their expected value. We show that the computations of expected Shapley values and of the expected values of Boolean functions are interreducible in polynomial time, thus obtaining the same tractability landscape. We investigate the specific tractable case where Boolean functions are represented as deterministic decomposable circuits, designing a polynomial-time algorithm for this setting. We present applications to probabilistic databases through database provenance, and an effective implementation of this algorithm within the ProvSQL system, which experimentally validates its feasibility over a standard benchmark.
Related papers
- Shapley Value Computation in Ontology-Mediated Query Answering [3.1952340441132474]
The Shapley value, originally introduced in cooperative game theory for wealth distribution, has found use in KR and databases.
We present a detailed complexity analysis of Shapley value computation (SVC) in the query answering setting.
arXiv Detail & Related papers (2024-07-29T14:45:14Z) - Variational Shapley Network: A Probabilistic Approach to Self-Explaining
Shapley values with Uncertainty Quantification [2.6699011287124366]
Shapley values have emerged as a foundational tool in machine learning (ML) for elucidating model decision-making processes.
We introduce a novel, self-explaining method that simplifies the computation of Shapley values significantly, requiring only a single forward pass.
arXiv Detail & Related papers (2024-02-06T18:09:05Z) - Poisson Process for Bayesian Optimization [126.51200593377739]
We propose a ranking-based surrogate model based on the Poisson process and introduce an efficient BO framework, namely Poisson Process Bayesian Optimization (PoPBO)
Compared to the classic GP-BO method, our PoPBO has lower costs and better robustness to noise, which is verified by abundant experiments.
arXiv Detail & Related papers (2024-02-05T02:54:50Z) - Fast Shapley Value Estimation: A Unified Approach [71.92014859992263]
We propose a straightforward and efficient Shapley estimator, SimSHAP, by eliminating redundant techniques.
In our analysis of existing approaches, we observe that estimators can be unified as a linear transformation of randomly summed values from feature subsets.
Our experiments validate the effectiveness of our SimSHAP, which significantly accelerates the computation of accurate Shapley values.
arXiv Detail & Related papers (2023-11-02T06:09:24Z) - An Efficient Shapley Value Computation for the Naive Bayes Classifier [0.0]
This article proposes an exact analytic expression of Shapley values in the case of the naive Bayes classifier.
Results show that our Shapley proposal for the naive Bayes provides informative results with low algorithmic complexity.
arXiv Detail & Related papers (2023-07-31T14:39:10Z) - DU-Shapley: A Shapley Value Proxy for Efficient Dataset Valuation [23.646508094051768]
We consider the dataset valuation problem, that is, the problem of quantifying the incremental gain.
The Shapley value is a natural tool to perform dataset valuation due to its formal axiomatic justification.
We propose a novel approximation, referred to as discrete uniform Shapley, which is expressed as an expectation under a discrete uniform distribution.
arXiv Detail & Related papers (2023-06-03T10:22:50Z) - Validation Diagnostics for SBI algorithms based on Normalizing Flows [55.41644538483948]
This work proposes easy to interpret validation diagnostics for multi-dimensional conditional (posterior) density estimators based on NF.
It also offers theoretical guarantees based on results of local consistency.
This work should help the design of better specified models or drive the development of novel SBI-algorithms.
arXiv Detail & Related papers (2022-11-17T15:48:06Z) - Exact Shapley Values for Local and Model-True Explanations of Decision
Tree Ensembles [0.0]
We consider the application of Shapley values for explaining decision tree ensembles.
We present a novel approach to Shapley value-based feature attribution that can be applied to random forests and boosted decision trees.
arXiv Detail & Related papers (2021-12-16T20:16:02Z) - Structural Learning of Probabilistic Sentential Decision Diagrams under
Partial Closed-World Assumption [127.439030701253]
Probabilistic sentential decision diagrams are a class of structured-decomposable circuits.
We propose a new scheme based on a partial closed-world assumption: data implicitly provide the logical base of the circuit.
Preliminary experiments show that the proposed approach might properly fit training data, and generalize well to test data, provided that these remain consistent with the underlying logical base.
arXiv Detail & Related papers (2021-07-26T12:01:56Z) - Tractable Inference in Credal Sentential Decision Diagrams [116.6516175350871]
Probabilistic sentential decision diagrams are logic circuits where the inputs of disjunctive gates are annotated by probability values.
We develop the credal sentential decision diagrams, a generalisation of their probabilistic counterpart that allows for replacing the local probabilities with credal sets of mass functions.
For a first empirical validation, we consider a simple application based on noisy seven-segment display images.
arXiv Detail & Related papers (2020-08-19T16:04:34Z) - Spatially Adaptive Inference with Stochastic Feature Sampling and
Interpolation [72.40827239394565]
We propose to compute features only at sparsely sampled locations.
We then densely reconstruct the feature map with an efficient procedure.
The presented network is experimentally shown to save substantial computation while maintaining accuracy over a variety of computer vision tasks.
arXiv Detail & Related papers (2020-03-19T15:36:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.