Shapley Value Computation in Ontology-Mediated Query Answering
- URL: http://arxiv.org/abs/2407.20058v2
- Date: Mon, 25 Nov 2024 10:04:55 GMT
- Title: Shapley Value Computation in Ontology-Mediated Query Answering
- Authors: Meghyn Bienvenu, Diego Figueira, Pierre Lafourcade,
- Abstract summary: The Shapley value, originally introduced in cooperative game theory for wealth distribution, has found use in KR and databases.
We present a detailed complexity analysis of Shapley value computation (SVC) in the query answering setting.
- Score: 3.1952340441132474
- License:
- Abstract: The Shapley value, originally introduced in cooperative game theory for wealth distribution, has found use in KR and databases for the purpose of assigning scores to formulas and database tuples based upon their contribution to obtaining a query result or inconsistency. In the present paper, we explore the use of Shapley values in ontology-mediated query answering (OMQA) and present a detailed complexity analysis of Shapley value computation (SVC) in the OMQA setting. In particular, we establish a PF/#P-hard dichotomy for SVC for ontology-mediated queries (T,q) composed of an ontology T formulated in the description logic ELHI_\bot and a connected constant-free homomorphism-closed query q. We further show that the #P-hardness side of the dichotomy can be strengthened to cover possibly disconnected queries with constants. Our results exploit recently discovered connections between SVC and probabilistic query evaluation and allow us to generalize existing results on probabilistic OMQA.
Related papers
- Effective Instruction Parsing Plugin for Complex Logical Query Answering on Knowledge Graphs [51.33342412699939]
Knowledge Graph Query Embedding (KGQE) aims to embed First-Order Logic (FOL) queries in a low-dimensional KG space for complex reasoning over incomplete KGs.
Recent studies integrate various external information (such as entity types and relation context) to better capture the logical semantics of FOL queries.
We propose an effective Query Instruction Parsing (QIPP) that captures latent query patterns from code-like query instructions.
arXiv Detail & Related papers (2024-10-27T03:18:52Z) - pEBR: A Probabilistic Approach to Embedding Based Retrieval [4.8338111302871525]
Embedding retrieval aims to learn a shared semantic representation space for both queries and items.
In current industrial practice, retrieval systems typically retrieve a fixed number of items for different queries.
arXiv Detail & Related papers (2024-10-25T07:14:12Z) - Adaptive-RAG: Learning to Adapt Retrieval-Augmented Large Language Models through Question Complexity [59.57065228857247]
Retrieval-augmented Large Language Models (LLMs) have emerged as a promising approach to enhancing response accuracy in several tasks, such as Question-Answering (QA)
We propose a novel adaptive QA framework, that can dynamically select the most suitable strategy for (retrieval-augmented) LLMs based on the query complexity.
We validate our model on a set of open-domain QA datasets, covering multiple query complexities, and show that ours enhances the overall efficiency and accuracy of QA systems.
arXiv Detail & Related papers (2024-03-21T13:52:30Z) - Expected Shapley-Like Scores of Boolean Functions: Complexity and Applications to Probabilistic Databases [3.386124605656362]
We adapt Shapley-like scores to probabilistic settings, the objective being to compute their expected value.
We show that the computations of expected Shapley values and of the expected values of Boolean functions are interreducible in time.
We present applications to databases through database provenance, and an effective implementation of this algorithm within the Provable system.
arXiv Detail & Related papers (2024-01-12T10:34:31Z) - Knowledge Base Question Answering by Case-based Reasoning over Subgraphs [81.22050011503933]
We show that our model answers queries requiring complex reasoning patterns more effectively than existing KG completion algorithms.
The proposed model outperforms or performs competitively with state-of-the-art models on several KBQA benchmarks.
arXiv Detail & Related papers (2022-02-22T01:34:35Z) - From Conjunctive Queries to Instance Queries in Ontology-Mediated
Querying [17.79631575141597]
We consider ontology-mediated queries based on expressive description logics of the ALC family and (unions) of conjunctive queries.
Our results include exact characterizations of when such a rewriting is possible and tight complexity bounds for deciding rewritability.
arXiv Detail & Related papers (2020-10-22T16:40:59Z) - Robust Question Answering Through Sub-part Alignment [53.94003466761305]
We model question answering as an alignment problem.
We train our model on SQuAD v1.1 and test it on several adversarial and out-of-domain datasets.
arXiv Detail & Related papers (2020-04-30T09:10:57Z) - CQE in Description Logics Through Instance Indistinguishability
(extended version) [0.0]
We study privacy-preserving query answering in Description Logics (DLs)
We derive data complexity results query answering over DL-Lite$_mathcal$$.
We identify a semantically well-founded notion of approximated confidentiality answering for CQE.
arXiv Detail & Related papers (2020-04-24T17:28:24Z) - Query Focused Multi-Document Summarization with Distant Supervision [88.39032981994535]
Existing work relies heavily on retrieval-style methods for estimating the relevance between queries and text segments.
We propose a coarse-to-fine modeling framework which introduces separate modules for estimating whether segments are relevant to the query.
We demonstrate that our framework outperforms strong comparison systems on standard QFS benchmarks.
arXiv Detail & Related papers (2020-04-06T22:35:19Z) - Conditional Self-Attention for Query-based Summarization [49.616774159367516]
We propose textitconditional self-attention (CSA), a neural network module designed for conditional dependency modeling.
Experiments on Debatepedia and HotpotQA benchmark datasets show CSA consistently outperforms vanilla Transformer.
arXiv Detail & Related papers (2020-02-18T02:22:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.