論文の概要: CCFC: Bridging Federated Clustering and Contrastive Learning
- arxiv url: http://arxiv.org/abs/2401.06634v1
- Date: Fri, 12 Jan 2024 15:26:44 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-15 19:10:29.839386
- Title: CCFC: Bridging Federated Clustering and Contrastive Learning
- Title(参考訳): ccfc:連合クラスタリングとコントラスト学習の橋渡し
- Authors: Jie Yan, Jing Liu and Zhong-Yuan Zhang
- Abstract要約: 本稿では,クラスタコントラスト・フェデレーション・クラスタリング(CCFC)という新しいフェデレーション・クラスタリング手法を提案する。
CCFCは、実用的な観点から、デバイス障害を扱う上で優れた性能を示す。
- 参考スコア(独自算出の注目度): 9.91610928326645
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated clustering, an essential extension of centralized clustering for
federated scenarios, enables multiple data-holding clients to collaboratively
group data while keeping their data locally. In centralized scenarios,
clustering driven by representation learning has made significant advancements
in handling high-dimensional complex data. However, the combination of
federated clustering and representation learning remains underexplored. To
bridge this, we first tailor a cluster-contrastive model for learning
clustering-friendly representations. Then, we harness this model as the
foundation for proposing a new federated clustering method, named
cluster-contrastive federated clustering (CCFC). Benefiting from representation
learning, the clustering performance of CCFC even double those of the best
baseline methods in some cases. Compared to the most related baseline, the
benefit results in substantial NMI score improvements of up to 0.4155 on the
most conspicuous case. Moreover, CCFC also shows superior performance in
handling device failures from a practical viewpoint.
- Abstract(参考訳): フェデレーションクラスタリング(federated clustering)は、フェデレーションシナリオのための集中型クラスタリングの不可欠な拡張であり、複数のデータ保持クライアントがデータをローカルに保持しながら、協調的にデータをグループ化することができる。
集中型シナリオでは、表現学習によって駆動されるクラスタリングは、高次元の複雑なデータを扱う上で大きな進歩を遂げている。
しかし、連合クラスタリングと表現学習の組み合わせはいまだに未検討である。
これを実現するために,まず,クラスタリングにやさしい表現を学習するためのクラスタ結合モデルを提案する。
次に,このモデルを用いて,ccfc(cluster-contrastive federated clustering)と呼ばれる新しいフェデレーションクラスタリング手法を提案する。
表現学習の恩恵を受け、CCFCのクラスタリング性能は、場合によっては最高のベースライン手法の2倍にもなる。
最も関連するベースラインと比較すると、最も顕著なケースではNMIスコアが0.4155まで改善される。
さらに, CCFCは, 実用的観点から装置故障の処理性能も優れていた。
関連論文リスト
- Adaptive Self-supervised Robust Clustering for Unstructured Data with Unknown Cluster Number [12.926206811876174]
適応型自己教師型ロバストクラスタリング(Adaptive Self-supervised Robust Clustering, ASRC)と呼ばれる非構造化データに適した,新たな自己教師型ディープクラスタリング手法を提案する。
ASRCはグラフ構造とエッジ重みを適応的に学習し、局所構造情報と大域構造情報の両方をキャプチャする。
ASRCは、クラスタ数の事前知識に依存するメソッドよりも優れており、非構造化データのクラスタリングの課題に対処する上での有効性を強調している。
論文 参考訳(メタデータ) (2024-07-29T15:51:09Z) - Dynamically Weighted Federated k-Means [0.0]
フェデレートされたクラスタリングにより、複数のデータソースが協力してデータをクラスタリングし、分散化とプライバシ保護を維持できる。
我々は,ロイドのk-meansクラスタリング法に基づいて,動的に重み付けされたk-means (DWF k-means) という新しいクラスタリングアルゴリズムを提案する。
我々は、クラスタリングスコア、精度、およびv尺度の観点から、アルゴリズムの性能を評価するために、複数のデータセットとデータ分散設定の実験を行う。
論文 参考訳(メタデータ) (2023-10-23T12:28:21Z) - DivClust: Controlling Diversity in Deep Clustering [47.85350249697335]
DivClustはコンセンサスクラスタリングソリューションを生成し、単一クラスタリングベースラインを一貫して上回る。
提案手法は, フレームワークやデータセット間の多様性を, 計算コストを極めて小さく効果的に制御する。
論文 参考訳(メタデータ) (2023-04-03T14:45:43Z) - Efficient Distribution Similarity Identification in Clustered Federated
Learning via Principal Angles Between Client Data Subspaces [59.33965805898736]
クラスタ学習は、クライアントをクラスタにグループ化することで、有望な結果をもたらすことが示されている。
既存のFLアルゴリズムは基本的に、クライアントを同様のディストリビューションでグループ化しようとしている。
以前のFLアルゴリズムは、訓練中に間接的に類似性を試みていた。
論文 参考訳(メタデータ) (2022-09-21T17:37:54Z) - DeepCluE: Enhanced Image Clustering via Multi-layer Ensembles in Deep
Neural Networks [53.88811980967342]
本稿では,Ensembles (DeepCluE) を用いたDeep Clusteringを提案する。
ディープニューラルネットワークにおける複数のレイヤのパワーを活用することで、ディープクラスタリングとアンサンブルクラスタリングのギャップを埋める。
6つの画像データセットの実験結果から、最先端のディープクラスタリングアプローチに対するDeepCluEの利点が確認されている。
論文 参考訳(メタデータ) (2022-06-01T09:51:38Z) - Learning Statistical Representation with Joint Deep Embedded Clustering [2.1267423178232407]
StatDECは、共同統計表現学習とクラスタリングのための教師なしのフレームワークである。
実験により,これらの表現を用いることで,様々な画像データセットにまたがる不均衡な画像クラスタリングの結果を大幅に改善できることが示された。
論文 参考訳(メタデータ) (2021-09-11T09:26:52Z) - Very Compact Clusters with Structural Regularization via Similarity and
Connectivity [3.779514860341336]
本稿では,汎用データセットのためのエンドツーエンドのディープクラスタリングアルゴリズムであるVery Compact Clusters (VCC)を提案する。
提案手法は,最先端のクラスタリング手法よりも優れたクラスタリング性能を実現する。
論文 参考訳(メタデータ) (2021-06-09T23:22:03Z) - You Never Cluster Alone [150.94921340034688]
我々は、主流のコントラスト学習パラダイムをクラスタレベルのスキームに拡張し、同じクラスタに属するすべてのデータが統一された表現に寄与する。
分類変数の集合をクラスタ化代入信頼度として定義し、インスタンスレベルの学習トラックとクラスタレベルの学習トラックを関連付ける。
代入変数を再パラメータ化することで、TCCはエンドツーエンドでトレーニングされる。
論文 参考訳(メタデータ) (2021-06-03T14:59:59Z) - Graph Contrastive Clustering [131.67881457114316]
本稿では,クラスタリングタスクに適用可能な新しいグラフコントラスト学習フレームワークを提案し,gcc(graph constrastive clustering)法を考案した。
特に、グラフラプラシアンに基づくコントラスト損失は、より識別的かつクラスタリングフレンドリーな特徴を学ぶために提案されている。
一方で、よりコンパクトなクラスタリング割り当てを学ぶために、グラフベースのコントラスト学習戦略が提案されている。
論文 参考訳(メタデータ) (2021-04-03T15:32:49Z) - Contrastive Clustering [57.71729650297379]
本稿では,インスタンスレベルのコントラスト学習を明示的に行うContrastive Clustering (CC)を提案する。
特にCCは、CIFAR-10(CIFAR-100)データセット上で0.705(0.431)のNMIを達成しており、最高のベースラインと比較して最大19%(39%)のパフォーマンス向上を実現している。
論文 参考訳(メタデータ) (2020-09-21T08:54:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。