Graph Representation Learning for Parameter Transferability in Quantum Approximate Optimization Algorithm
- URL: http://arxiv.org/abs/2401.06655v2
- Date: Tue, 9 Jul 2024 15:43:24 GMT
- Title: Graph Representation Learning for Parameter Transferability in Quantum Approximate Optimization Algorithm
- Authors: Jose Falla, Quinn Langfitt, Yuri Alexeev, Ilya Safro,
- Abstract summary: The quantum approximate optimization algorithm (QAOA) is one of the most promising candidates for achieving quantum advantage through quantum-enhanced optimization.
In this work, we apply five different graph embedding techniques to determine good donor candidates for parameter transferability.
Using this technique, we effectively reduce the number of iterations required for parameter optimization, obtaining an approximate solution to the target problem with an order of magnitude speedup.
- Score: 1.0971022294548696
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The quantum approximate optimization algorithm (QAOA) is one of the most promising candidates for achieving quantum advantage through quantum-enhanced combinatorial optimization. Optimal QAOA parameter concentration effects for special MaxCut problem instances have been observed, but a rigorous study of the subject is still lacking. Due to clustering of optimal QAOA parameters for MaxCut, successful parameter transferability between different MaxCut instances can be explained and predicted based on local properties of the graphs, including the type of subgraphs (lightcones) from which graphs are composed as well as the overall degree of nodes in the graph (parity). In this work, we apply five different graph embedding techniques to determine good donor candidates for parameter transferability, including parameter transferability between different classes of MaxCut instances. Using this technique, we effectively reduce the number of iterations required for parameter optimization, obtaining an approximate solution to the target problem with an order of magnitude speedup. This procedure also effectively removes the problem of encountering barren plateaus during the variational optimization of parameters. Additionally, our findings demonstrate that the transferred parameters maintain effectiveness when subjected to noise, supporting their use in real-world quantum applications. This work presents a framework for identifying classes of combinatorial optimization instances for which optimal donor candidates can be predicted such that QAOA can be substantially accelerated under both ideal and noisy conditions.
Related papers
- End-to-End Learning for Fair Multiobjective Optimization Under
Uncertainty [55.04219793298687]
The Predict-Then-Forecast (PtO) paradigm in machine learning aims to maximize downstream decision quality.
This paper extends the PtO methodology to optimization problems with nondifferentiable Ordered Weighted Averaging (OWA) objectives.
It shows how optimization of OWA functions can be effectively integrated with parametric prediction for fair and robust optimization under uncertainty.
arXiv Detail & Related papers (2024-02-12T16:33:35Z) - Similarity-Based Parameter Transferability in the Quantum Approximate
Optimization Algorithm [2.985148456817082]
We show clustering of optimal QAOA parameters around specific values.
successful transferability of parameters between different QAOA instances can be explained.
We show that one can use optimal donor graph QAOA parameters as near-optimal parameters for larger acceptor graphs with comparable approximation ratios.
arXiv Detail & Related papers (2023-07-11T16:35:49Z) - Twisted hybrid algorithms for combinatorial optimization [68.8204255655161]
Proposed hybrid algorithms encode a cost function into a problem Hamiltonian and optimize its energy by varying over a set of states with low circuit complexity.
We show that for levels $p=2,ldots, 6$, the level $p$ can be reduced by one while roughly maintaining the expected approximation ratio.
arXiv Detail & Related papers (2022-03-01T19:47:16Z) - Unsupervised strategies for identifying optimal parameters in Quantum
Approximate Optimization Algorithm [3.508346077709686]
We study unsupervised Machine Learning approaches for setting parameters without optimization.
We showcase them within Recursive-QAOA up to depth $3$ where the number of QAOA parameters used per iteration is limited to $3$.
We obtain similar performances to the case where we extensively optimize the angles, hence saving numerous circuit calls.
arXiv Detail & Related papers (2022-02-18T19:55:42Z) - STORM+: Fully Adaptive SGD with Momentum for Nonconvex Optimization [74.1615979057429]
We investigate non-batch optimization problems where the objective is an expectation over smooth loss functions.
Our work builds on the STORM algorithm, in conjunction with a novel approach to adaptively set the learning rate and momentum parameters.
arXiv Detail & Related papers (2021-11-01T15:43:36Z) - Parameters Fixing Strategy for Quantum Approximate Optimization
Algorithm [0.0]
We propose a strategy to give high approximation ratio on average, even at large circuit depths, by initializing QAOA with the optimal parameters obtained from the previous depths.
We test our strategy on the Max-cut problem of certain classes of graphs such as the 3-regular graphs and the Erd"os-R'enyi graphs.
arXiv Detail & Related papers (2021-08-11T15:44:16Z) - Transferability of optimal QAOA parameters between random graphs [3.321726991033431]
We show that convergence of the optimal QAOA parameters around specific values can be explained and predicted based on the local properties of the graphs.
We demonstrate how optimized parameters calculated for a 6-node random graph can be successfully used without modification as nearly optimal parameters for a 64-node random graph.
arXiv Detail & Related papers (2021-06-14T15:57:47Z) - Empirical performance bounds for quantum approximate optimization [0.27998963147546135]
Quantifying performance bounds provides insight into when QAOA may be viable for solving real-world applications.
We find QAOA exceeds the Goemans-Williamson approximation ratio bound for most graphs.
The resulting data set is presented as a benchmark for establishing empirical bounds on QAOA performance.
arXiv Detail & Related papers (2021-02-12T23:12:09Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisy hybrid quantum-classical algorithms are powerful tools to maximize the use of Noisy Intermediate Scale Quantum devices.
We propose a strategy for such ansatze used in variational quantum algorithms, which we call "Efficient Circuit Training" (PECT)
Instead of optimizing all of the ansatz parameters at once, PECT launches a sequence of variational algorithms.
arXiv Detail & Related papers (2020-10-01T18:14:11Z) - Convergence of adaptive algorithms for weakly convex constrained
optimization [59.36386973876765]
We prove the $mathcaltilde O(t-1/4)$ rate of convergence for the norm of the gradient of Moreau envelope.
Our analysis works with mini-batch size of $1$, constant first and second order moment parameters, and possibly smooth optimization domains.
arXiv Detail & Related papers (2020-06-11T17:43:19Z) - Cross Entropy Hyperparameter Optimization for Constrained Problem
Hamiltonians Applied to QAOA [68.11912614360878]
Hybrid quantum-classical algorithms such as Quantum Approximate Optimization Algorithm (QAOA) are considered as one of the most encouraging approaches for taking advantage of near-term quantum computers in practical applications.
Such algorithms are usually implemented in a variational form, combining a classical optimization method with a quantum machine to find good solutions to an optimization problem.
In this study we apply a Cross-Entropy method to shape this landscape, which allows the classical parameter to find better parameters more easily and hence results in an improved performance.
arXiv Detail & Related papers (2020-03-11T13:52:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.