論文の概要: Datasets, Clues and State-of-the-Arts for Multimedia Forensics: An
Extensive Review
- arxiv url: http://arxiv.org/abs/2401.06999v1
- Date: Sat, 13 Jan 2024 07:03:58 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-17 20:20:12.035080
- Title: Datasets, Clues and State-of-the-Arts for Multimedia Forensics: An
Extensive Review
- Title(参考訳): マルチメディア鑑識のためのデータセット,手掛かり,最先端技術
- Authors: Ankit Yadav, Dinesh Kumar Vishwakarma
- Abstract要約: 本調査は,ディープラーニングモデルを用いたマルチメディアデータにおける検出の改ざん手法に焦点をあてる。
悪質な操作検出のためのベンチマークデータセットの詳細な分析を公開している。
また、タグ付けヒントの包括的なリストや、一般的に使用されているディープラーニングアーキテクチャも提供する。
- 参考スコア(独自算出の注目度): 19.30075248247771
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: With the large chunks of social media data being created daily and the
parallel rise of realistic multimedia tampering methods, detecting and
localising tampering in images and videos has become essential. This survey
focusses on approaches for tampering detection in multimedia data using deep
learning models. Specifically, it presents a detailed analysis of benchmark
datasets for malicious manipulation detection that are publicly available. It
also offers a comprehensive list of tampering clues and commonly used deep
learning architectures. Next, it discusses the current state-of-the-art
tampering detection methods, categorizing them into meaningful types such as
deepfake detection methods, splice tampering detection methods, copy-move
tampering detection methods, etc. and discussing their strengths and
weaknesses. Top results achieved on benchmark datasets, comparison of deep
learning approaches against traditional methods and critical insights from the
recent tampering detection methods are also discussed. Lastly, the research
gaps, future direction and conclusion are discussed to provide an in-depth
understanding of the tampering detection research arena.
- Abstract(参考訳): 毎日大量のソーシャルメディアデータが作成され、現実的なマルチメディア改ざん手法が並行して普及する中、画像や動画の改ざんの検出とローカライズが重要になっている。
本調査は,ディープラーニングモデルを用いたマルチメディアデータの改ざん手法に着目した。
具体的には、悪質な操作検出のためのベンチマークデータセットの詳細な分析を公開している。
さらに、改ざんするヒントや、一般的に使用されるディープラーニングアーキテクチャの包括的なリストも提供している。
次に, 最先端の改ざん検出手法について論じ, ディープフェイク検出方法, スプライス改ざん検出方法, コピーモーブ改ざん検出方法などの有意義なタイプに分類し, それらの長所と短所を論じる。
ベンチマークデータセットで得られた上位結果、従来の手法に対するディープラーニングアプローチの比較、および最近の改ざん検出手法からの批判的洞察についても論じる。
最後に, 改ざん検出研究の場を深く理解するために, 研究ギャップ, 今後の方向性, 結論について論じる。
関連論文リスト
- Understanding Audiovisual Deepfake Detection: Techniques, Challenges, Human Factors and Perceptual Insights [49.81915942821647]
ディープラーニングは様々な分野に適用され、ディープフェイク検出への影響は例外ではない。
ディープフェイク(英: Deepfakes)は、政治的偽造、フィッシング、スランダリング、偽情報の拡散に偽装的に使用できる、偽物だが現実的な合成コンテンツである。
本稿では,ディープフェイク検出戦略の有効性を改善し,サイバーセキュリティとメディアの整合性に関する今後の研究を導くことを目的とする。
論文 参考訳(メタデータ) (2024-11-12T09:02:11Z) - The Impact of Semi-Supervised Learning on Line Segment Detection [11.636855122196323]
本稿では,半教師付きフレームワークを用いた画像中の線分検出手法を提案する。
完全教師付き手法に匹敵する結果を示す。
本手法は,半教師付き学習のための近代的最先端手法を用いて,まず線検出を目標とすることを目的としている。
論文 参考訳(メタデータ) (2024-11-07T10:28:11Z) - CrossDF: Improving Cross-Domain Deepfake Detection with Deep Information Decomposition [53.860796916196634]
クロスデータセットディープフェイク検出(CrossDF)の性能を高めるためのディープ情報分解(DID)フレームワークを提案する。
既存のディープフェイク検出方法とは異なり、我々のフレームワークは特定の視覚的アーティファクトよりも高いレベルのセマンティック特徴を優先する。
顔の特徴をディープフェイク関連情報と無関係情報に適応的に分解し、本質的なディープフェイク関連情報のみを用いてリアルタイム・フェイク識別を行う。
論文 参考訳(メタデータ) (2023-09-30T12:30:25Z) - A Continual Deepfake Detection Benchmark: Dataset, Methods, and
Essentials [97.69553832500547]
本稿では, 既知の生成モデルと未知の生成モデルの両方から, 新たなディープフェイク集合に対する連続的なディープフェイク検出ベンチマーク(CDDB)を提案する。
本研究では,連続的なディープラーニング検出問題に対して,連続的な視覚認識で一般的に使用される多クラス漸進学習手法を適応するために,複数のアプローチを利用する。
論文 参考訳(メタデータ) (2022-05-11T13:07:19Z) - Deep Learning for Hate Speech Detection: A Comparative Study [54.42226495344908]
ここでは, ディープ・ヘイト・音声検出法と浅いヘイト・音声検出法を大規模に比較した。
私たちの目標は、この地域の進歩を照らし、現在の最先端の強みと弱点を特定することです。
そこで我々は,ヘイトスピーチ検出の実践的利用に関するガイダンスの提供,最先端の定量化,今後の研究方向の特定を目的としている。
論文 参考訳(メタデータ) (2022-02-19T03:48:20Z) - A Comparative Review of Recent Few-Shot Object Detection Algorithms [0.0]
ラベル付きデータで新しいクラスに適応するために学習するオブジェクトの少ない検出は、命令的で長期にわたる問題である。
近年の研究では、ターゲットドメインを監督せずに追加データセットに暗黙の手がかりを使って、少数のショット検出器が堅牢なタスク概念を洗練させる方法が研究されている。
論文 参考訳(メタデータ) (2021-10-30T07:57:11Z) - A Unifying Review of Deep and Shallow Anomaly Detection [38.202998314502786]
我々は、様々な方法によって暗黙的に行われることの多い仮定と同様に、共通の根底にある原則を特定することを目的としている。
本稿では,最近の説明可能性技術を用いて,既存の主要な手法を実証的に評価する。
我々は、重要なオープン課題を概説し、異常検出における今後の研究の道筋を特定する。
論文 参考訳(メタデータ) (2020-09-24T14:47:54Z) - VideoForensicsHQ: Detecting High-quality Manipulated Face Videos [77.60295082172098]
偽造検知器の性能は、人間の目で見られる人工物の存在にどのように依存するかを示す。
前例のない品質の顔ビデオ偽造検出のための新しいベンチマークデータセットを導入する。
論文 参考訳(メタデータ) (2020-05-20T21:17:43Z) - Survey of Network Intrusion Detection Methods from the Perspective of
the Knowledge Discovery in Databases Process [63.75363908696257]
本稿では,侵入検知器の開発を目的として,ネットワークデータに適用された手法について概説する。
本稿では,データのキャプチャ,準備,変換,データマイニング,評価などの手法について論じる。
この文献レビューの結果、ネットワークセキュリティ分野のさらなる研究のために考慮すべきいくつかのオープンな問題について検討する。
論文 参考訳(メタデータ) (2020-01-27T11:21:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。