論文の概要: The Impact of Semi-Supervised Learning on Line Segment Detection
- arxiv url: http://arxiv.org/abs/2411.04596v1
- Date: Thu, 07 Nov 2024 10:28:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-08 19:39:38.261803
- Title: The Impact of Semi-Supervised Learning on Line Segment Detection
- Title(参考訳): 半教師付き学習が線分検出に及ぼす影響
- Authors: Johanna Engman, Karl Åström, Magnus Oskarsson,
- Abstract要約: 本稿では,半教師付きフレームワークを用いた画像中の線分検出手法を提案する。
完全教師付き手法に匹敵する結果を示す。
本手法は,半教師付き学習のための近代的最先端手法を用いて,まず線検出を目標とすることを目的としている。
- 参考スコア(独自算出の注目度): 11.636855122196323
- License:
- Abstract: In this paper we present a method for line segment detection in images, based on a semi-supervised framework. Leveraging the use of a consistency loss based on differently augmented and perturbed unlabeled images with a small amount of labeled data, we show comparable results to fully supervised methods. This opens up application scenarios where annotation is difficult or expensive, and for domain specific adaptation of models. We are specifically interested in real-time and online applications, and investigate small and efficient learning backbones. Our method is to our knowledge the first to target line detection using modern state-of-the-art methodologies for semi-supervised learning. We test the method on both standard benchmarks and domain specific scenarios for forestry applications, showing the tractability of the proposed method.
- Abstract(参考訳): 本稿では,半教師付きフレームワークを用いた画像中の線分検出手法を提案する。
ラベル付きデータの少ないラベル付き画像の異なる拡張および摂動画像に基づいて、一貫性損失を用いることにより、完全教師付き手法に匹敵する結果を示す。
これにより、アノテーションの難しさやコスト、ドメイン固有のモデルの適応といったアプリケーションシナリオが開きます。
私たちは特にリアルタイムおよびオンラインアプリケーションに興味を持ち、小規模で効率的な学習バックボーンを調査しています。
本手法は,半教師付き学習のための近代的最先端手法を用いて,まず線検出を目標とすることを目的としている。
本手法は,森林用アプリケーションのための標準ベンチマークとドメイン固有のシナリオの両方でテストし,提案手法のトラクタビリティを示す。
関連論文リスト
- Mismatched: Evaluating the Limits of Image Matching Approaches and Benchmarks [9.388897214344572]
2次元画像からの3次元3次元再構成はコンピュータビジョンにおける活発な研究分野である。
伝統的にこの作業にはパラメトリック技術が用いられてきた。
近年の進歩は、学習ベースの方法にシフトしている。
論文 参考訳(メタデータ) (2024-08-29T11:16:34Z) - Domain Adaptive Multiple Instance Learning for Instance-level Prediction
of Pathological Images [45.132775668689604]
アノテーションのコストを増大させることなく、ターゲットデータセットの分類性能を向上させるためのタスク設定を提案する。
両手法の監督情報を効果的に組み合わせるために,信頼性の高い擬似ラベルを作成する手法を提案する。
論文 参考訳(メタデータ) (2023-04-07T08:31:06Z) - Region-level Active Learning for Cluttered Scenes [60.93811392293329]
本稿では,従来の画像レベルのアプローチとオブジェクトレベルのアプローチを一般化した領域レベルのアプローチに仮定する新たな戦略を提案する。
その結果,本手法はラベル付けの労力を大幅に削減し,クラス不均衡や散らかったシーンを生かしたリアルなデータに対する希少なオブジェクト検索を改善することが示唆された。
論文 参考訳(メタデータ) (2021-08-20T14:02:38Z) - Triggering Failures: Out-Of-Distribution detection by learning from
local adversarial attacks in Semantic Segmentation [76.2621758731288]
セグメンテーションにおけるアウト・オブ・ディストリビューション(OOD)オブジェクトの検出に取り組む。
私たちの主な貢献は、ObsNetと呼ばれる新しいOOD検出アーキテクチャであり、ローカル・アタック(LAA)に基づく専用トレーニングスキームと関連付けられています。
3つの異なるデータセットの文献の最近の10つの手法と比較して,速度と精度の両面で最高の性能が得られることを示す。
論文 参考訳(メタデータ) (2021-08-03T17:09:56Z) - Segmentation of VHR EO Images using Unsupervised Learning [19.00071868539993]
単一のラベルのないシーンでトレーニングできる教師なしセマンティックセマンティックセマンティクス手法を提案する。
提案手法は、この特性を利用して、より大きなシーンから小さなパッチをサンプリングする。
対象画像/シーンの教師なしトレーニングの後、モデルはシーンに存在する主要なクラスを自動的に分離し、セグメンテーションマップを生成する。
論文 参考訳(メタデータ) (2021-07-09T11:42:48Z) - Distribution Alignment: A Unified Framework for Long-tail Visual
Recognition [52.36728157779307]
長尾視覚認識のための分散アライメント戦略を提案する。
次に,二段階学習における一般化された再重み付け法を導入して,事前のクラスバランスをとる。
提案手法は, 4つの認識タスクすべてにおいて, 単純で統一されたフレームワークを用いて最先端の結果を得る。
論文 参考訳(メタデータ) (2021-03-30T14:09:53Z) - Visualization of Supervised and Self-Supervised Neural Networks via
Attribution Guided Factorization [87.96102461221415]
クラスごとの説明性を提供するアルゴリズムを開発した。
実験の広範なバッテリーでは、クラス固有の可視化のための手法の能力を実証する。
論文 参考訳(メタデータ) (2020-12-03T18:48:39Z) - Geography-Aware Self-Supervised Learning [79.4009241781968]
異なる特徴により、標準ベンチマークにおけるコントラスト学習と教師あり学習の間には、非自明なギャップが持続していることが示される。
本稿では,リモートセンシングデータの空間的整合性を利用した新しいトレーニング手法を提案する。
提案手法は,画像分類,オブジェクト検出,セマンティックセグメンテーションにおけるコントラスト学習と教師あり学習のギャップを埋めるものである。
論文 参考訳(メタデータ) (2020-11-19T17:29:13Z) - Region Comparison Network for Interpretable Few-shot Image
Classification [97.97902360117368]
新しいクラスのモデルをトレーニングするために、ラベル付きサンプルの限られた数だけを効果的に活用するための画像分類が提案されている。
本研究では,領域比較ネットワーク (RCN) と呼ばれる距離学習に基づく手法を提案する。
また,タスクのレベルからカテゴリへの解釈可能性の一般化も提案する。
論文 参考訳(メタデータ) (2020-09-08T07:29:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。