論文の概要: Empowering Medical Imaging with Artificial Intelligence: A Review of
Machine Learning Approaches for the Detection, and Segmentation of COVID-19
Using Radiographic and Tomographic Images
- arxiv url: http://arxiv.org/abs/2401.07020v1
- Date: Sat, 13 Jan 2024 09:17:39 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-17 20:05:42.131154
- Title: Empowering Medical Imaging with Artificial Intelligence: A Review of
Machine Learning Approaches for the Detection, and Segmentation of COVID-19
Using Radiographic and Tomographic Images
- Title(参考訳): 人工知能を用いた医用画像のエンパワーメント:放射線画像と断層画像を用いたcovid-19の検出とセグメンテーションのための機械学習アプローチのレビュー
- Authors: Sayed Amir Mousavi Mobarakeh, Kamran Kazemi, Ardalan Aarabi,
Habibollah Danyal
- Abstract要約: 2019年以降、コロナウイルスとその新規株の世界的な普及により、新たな感染が急増している。
X線およびCTイメージング技術の使用は、新型コロナウイルスの診断と管理に重要である。
本稿では、機械学習(ML)を用いた新型コロナウイルスの診断のための医療画像の改善手法に焦点を当てた。
- 参考スコア(独自算出の注目度): 2.232567376976564
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Since 2019, the global dissemination of the Coronavirus and its novel strains
has resulted in a surge of new infections. The use of X-ray and computed
tomography (CT) imaging techniques is critical in diagnosing and managing
COVID-19. Incorporating artificial intelligence (AI) into the field of medical
imaging is a powerful combination that can provide valuable support to
healthcare professionals.This paper focuses on the methodological approach of
using machine learning (ML) to enhance medical imaging for COVID-19
diagnosis.For example, deep learning can accurately distinguish lesions from
other parts of the lung without human intervention in a matter of
minutes.Moreover, ML can enhance performance efficiency by assisting
radiologists in making more precise clinical decisions, such as detecting and
distinguishing Covid-19 from different respiratory infections and segmenting
infections in CT and X-ray images, even when the lesions have varying sizes and
shapes.This article critically assesses machine learning methodologies utilized
for the segmentation, classification, and detection of Covid-19 within CT and
X-ray images, which are commonly employed tools in clinical and hospital
settings to represent the lung in various aspects and extensive detail.There is
a widespread expectation that this technology will continue to hold a central
position within the healthcare sector, driving further progress in the
management of the pandemic.
- Abstract(参考訳): 2019年以降、コロナウイルスとその新規株の世界的な普及により、新たな感染が急増している。
X線およびCTイメージング技術の使用は、新型コロナウイルスの診断と管理に重要である。
Incorporating artificial intelligence (AI) into the field of medical imaging is a powerful combination that can provide valuable support to healthcare professionals.This paper focuses on the methodological approach of using machine learning (ML) to enhance medical imaging for COVID-19 diagnosis.For example, deep learning can accurately distinguish lesions from other parts of the lung without human intervention in a matter of minutes.Moreover, ML can enhance performance efficiency by assisting radiologists in making more precise clinical decisions, such as detecting and distinguishing Covid-19 from different respiratory infections and segmenting infections in CT and X-ray images, even when the lesions have varying sizes and shapes.This article critically assesses machine learning methodologies utilized for the segmentation, classification, and detection of Covid-19 within CT and X-ray images, which are commonly employed tools in clinical and hospital settings to represent the lung in various aspects and extensive detail.There is a widespread expectation that this technology will continue to hold a central position within the healthcare sector, driving further progress in the management of the pandemic.
関連論文リスト
- Can GPT-4V(ision) Serve Medical Applications? Case Studies on GPT-4V for
Multimodal Medical Diagnosis [59.35504779947686]
GPT-4VはOpenAIの最新のマルチモーダル診断モデルである。
評価対象は17の人体システムである。
GPT-4Vは、医用画像のモダリティと解剖学を区別する能力を示す。
疾患の診断と包括的報告作成において重大な課題に直面している。
論文 参考訳(メタデータ) (2023-10-15T18:32:27Z) - Multi-Scale Feature Fusion using Parallel-Attention Block for COVID-19
Chest X-ray Diagnosis [2.15242029196761]
世界的な新型コロナウイルス危機下では、チェストX線(CXR)画像からの新型コロナウイルスの正確な診断が重要である。
並列アテンションブロックを用いた新しい多機能融合ネットワークを提案し、元のCXR画像とローカル位相特徴強調CXR画像をマルチスケールで融合する。
論文 参考訳(メタデータ) (2023-04-25T16:56:12Z) - Optimising Chest X-Rays for Image Analysis by Identifying and Removing
Confounding Factors [49.005337470305584]
新型コロナウイルス(COVID-19)のパンデミック(パンデミック)の間、新型コロナウイルス(COVID-19)の診断のための緊急設定で実施される画像の量は、臨床用CXRの取得が広範囲に及んだ。
公開データセット内の臨床的に取得されたCXRの変動品質は、アルゴリズムのパフォーマンスに大きな影響を及ぼす可能性がある。
我々は、新型コロナウイルスの胸部X線データセットを前処理し、望ましくないバイアスを取り除くための、シンプルで効果的なステップワイズアプローチを提案する。
論文 参考訳(メタデータ) (2022-08-22T13:57:04Z) - A Survey of Deep Learning Techniques for the Analysis of COVID-19 and
their usability for Detecting Omicron [0.24466725954625884]
2019年12月のコロナウイルス(COVID-19)の流行は、世界中で人間の脅威となっている。
深層学習 (DL) 技術は, 放射線画像における感染領域の解析とデライン化に, タイムリーに有効であることが証明された。
本稿では,DL手法の詳細な調査を行い,診断戦略と学習アプローチに基づく分類法について述べる。
論文 参考訳(メタデータ) (2022-02-13T17:44:33Z) - In-Line Image Transformations for Imbalanced, Multiclass Computer Vision
Classification of Lung Chest X-Rays [91.3755431537592]
本研究は、COVID-19 LCXRデータ不足のバランスをとるために画像変換を適用するために、文献の体系を活用することを目的としている。
convolutional neural networks(cnns)のようなディープラーニング技術は、健康状態と疾患状態を区別する特徴を選択することができる。
本研究は,CNNアーキテクチャを用いて高速多クラスLCXR分類を94%精度で行う。
論文 参考訳(メタデータ) (2021-04-06T02:01:43Z) - Diagnosis of Coronavirus Disease 2019 (COVID-19) with Structured Latent
Multi-View Representation Learning [48.05232274463484]
最近、コロナウイルス病2019(COVID-19)の流行は世界中で急速に広まっている。
多くの患者と医師の重労働のために、機械学習アルゴリズムによるコンピュータ支援診断が緊急に必要である。
本研究では,CT画像から抽出した一連の特徴を用いて,COVID-19の診断を行うことを提案する。
論文 参考訳(メタデータ) (2020-05-06T15:19:15Z) - Residual Attention U-Net for Automated Multi-Class Segmentation of
COVID-19 Chest CT Images [46.844349956057776]
新型コロナウイルス感染症(COVID-19)は世界中で急速に広がり、公衆衛生や経済に大きな影響を及ぼしている。
新型コロナウイルスによる肺感染症を効果的に定量化する研究はいまだにない。
複数の新型コロナウイルス感染症領域の自動セグメンテーションのための新しいディープラーニングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-04-12T16:24:59Z) - Review of Artificial Intelligence Techniques in Imaging Data
Acquisition, Segmentation and Diagnosis for COVID-19 [71.41929762209328]
新型コロナウイルス感染症(COVID-19)のパンデミックは世界中に広がっている。
X線やCT(Computerd Tomography)などの医用画像は、世界的な新型コロナウイルス対策に欠かせない役割を担っている。
最近登場した人工知能(AI)技術は、画像ツールの力を強化し、医療専門家を支援する。
論文 参考訳(メタデータ) (2020-04-06T15:21:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。