論文の概要: Image edge enhancement for effective image classification
- arxiv url: http://arxiv.org/abs/2401.07028v1
- Date: Sat, 13 Jan 2024 10:01:34 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-17 20:06:38.014493
- Title: Image edge enhancement for effective image classification
- Title(参考訳): 効率的な画像分類のためのエッジ強調
- Authors: Tianhao Bu, Michalis Lazarou, Tania Stathaki
- Abstract要約: ニューラルネットワークの精度とトレーニング速度を両立させるエッジ拡張に基づく手法を提案する。
我々のアプローチは、利用可能なデータセット内の画像からエッジなどの高周波特徴を抽出し、元の画像と融合させることである。
- 参考スコア(独自算出の注目度): 7.470763273994321
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Image classification has been a popular task due to its feasibility in
real-world applications. Training neural networks by feeding them RGB images
has demonstrated success over it. Nevertheless, improving the classification
accuracy and computational efficiency of this process continues to present
challenges that researchers are actively addressing. A widely popular embraced
method to improve the classification performance of neural networks is to
incorporate data augmentations during the training process. Data augmentations
are simple transformations that create slightly modified versions of the
training data and can be very effective in training neural networks to mitigate
overfitting and improve their accuracy performance. In this study, we draw
inspiration from high-boost image filtering and propose an edge
enhancement-based method as means to enhance both accuracy and training speed
of neural networks. Specifically, our approach involves extracting high
frequency features, such as edges, from images within the available dataset and
fusing them with the original images, to generate new, enriched images. Our
comprehensive experiments, conducted on two distinct datasets CIFAR10 and
CALTECH101, and three different network architectures ResNet-18, LeNet-5 and
CNN-9 demonstrates the effectiveness of our proposed method.
- Abstract(参考訳): 画像分類は、現実のアプリケーションで実現可能なため、一般的な課題である。
RGBイメージをフィードすることでニューラルネットワークのトレーニングが成功している。
それでも、このプロセスの分類精度と計算効率の改善は、研究者が積極的に取り組んでいる課題を示し続けている。
ニューラルネットワークの分類性能を改善するための広く普及している手法は、トレーニングプロセス中にデータ拡張を統合することである。
データ拡張は、トレーニングデータのわずかに修正されたバージョンを生成する単純な変換であり、オーバーフィッティングの軽減と精度の向上のためにニューラルネットワークのトレーニングに非常に効果的である。
本研究では,ハイブースト画像フィルタリングから着想を得て,ニューラルネットワークの精度とトレーニング速度の両立を目的としたエッジ強調方式を提案する。
具体的には,利用可能なデータセット内の画像からエッジなどの高周波特徴を抽出し,元の画像と融合することで,新たなエンリッチな画像を生成する。
2つの異なるデータセットであるcifar10とcaltech101と3つの異なるネットワークアーキテクチャであるresnet-18,lenet-5,cnn-9を用いて包括的な実験を行い,提案手法の有効性を実証した。
関連論文リスト
- LeRF: Learning Resampling Function for Adaptive and Efficient Image Interpolation [64.34935748707673]
最近のディープニューラルネットワーク(DNN)は、学習データ前処理を導入することで、パフォーマンスを著しく向上させた。
本稿では,DNNが学習した構造的前提と局所的連続仮定の両方を活かした学習再サンプリング(Learning Resampling, LeRF)を提案する。
LeRFは空間的に異なる再サンプリング関数を入力画像ピクセルに割り当て、ニューラルネットワークを用いてこれらの再サンプリング関数の形状を予測する。
論文 参考訳(メタデータ) (2024-07-13T16:09:45Z) - Unleashing the Power of Depth and Pose Estimation Neural Networks by
Designing Compatible Endoscopic Images [12.412060445862842]
内視鏡画像の特性を詳細に解析し、画像とニューラルネットワークの互換性を改善する。
まず,完全な画像情報の代わりに部分的な画像情報を入力するMask Image Modelling (MIM) モジュールを導入する。
第2に、画像とニューラルネットワークの互換性を明確に向上させるために、内視鏡画像を強化する軽量ニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2023-09-14T02:19:38Z) - Deep Multi-Threshold Spiking-UNet for Image Processing [51.88730892920031]
本稿では,SNN(Spike Neural Networks)とU-Netアーキテクチャを組み合わせた,画像処理のためのスパイキング-UNetの概念を紹介する。
効率的なスパイキング-UNetを実現するためには,スパイクによる高忠実度情報伝播の確保と,効果的なトレーニング戦略の策定という2つの課題に直面する。
実験の結果,画像のセグメンテーションとデノイングにおいて,スパイキングUNetは非スパイキングと同等の性能を発揮することがわかった。
論文 参考訳(メタデータ) (2023-07-20T16:00:19Z) - Increasing the Accuracy of a Neural Network Using Frequency Selective
Mesh-to-Grid Resampling [4.211128681972148]
ニューラルネットワークの入力データの処理にFSMR(Keypoint frequency selective mesh-to-grid resampling)を提案する。
ネットワークアーキテクチャや分類タスクによって、トレーニング中のFSMRの適用は学習プロセスに役立ちます。
ResNet50とOxflower17データセットの分類精度は最大4.31ポイント向上できる。
論文 参考訳(メタデータ) (2022-09-28T21:34:47Z) - Impact of Scaled Image on Robustness of Deep Neural Networks [0.0]
生画像のスケーリングはアウト・オブ・ディストリビューションデータを生成するため、ネットワークを騙すための敵攻撃の可能性がある。
本研究では,ImageNet Challengeデータセットのサブセットを複数でスケーリングすることで,Scaling-DistortionデータセットのImageNet-CSを提案する。
論文 参考訳(メタデータ) (2022-09-02T08:06:58Z) - Influence of image noise on crack detection performance of deep
convolutional neural networks [0.0]
深層畳み込みニューラルネットワークを用いた画像データからのひび割れの分類について多くの研究がなされている。
本稿では,画像ノイズがネットワークの精度に与える影響について検討する。
AlexNetは提案したインデックスに基づいて最も効率的なモデルに選ばれた。
論文 参考訳(メタデータ) (2021-11-03T09:08:54Z) - Joint Learning of Neural Transfer and Architecture Adaptation for Image
Recognition [77.95361323613147]
現在の最先端の視覚認識システムは、大規模データセット上でニューラルネットワークを事前トレーニングし、より小さなデータセットでネットワーク重みを微調整することに依存している。
本稿では,各ドメインタスクに適応したネットワークアーキテクチャの動的適応と,効率と効率の両面で重みの微調整の利点を実証する。
本手法は,ソースドメインタスクでスーパーネットトレーニングを自己教師付き学習に置き換え,下流タスクで線形評価を行うことにより,教師なしパラダイムに容易に一般化することができる。
論文 参考訳(メタデータ) (2021-03-31T08:15:17Z) - Learning degraded image classification with restoration data fidelity [0.0]
広く使用されている4つの分類ネットワークにおける分解型およびレベルの影響について検討する。
本稿では,事前学習したネットワークで得られた画像特徴を忠実度マップを用いて校正する手法を提案する。
その結果,提案手法は画像劣化による影響を緩和する有望な解であることがわかった。
論文 参考訳(メタデータ) (2021-01-23T23:47:03Z) - Fusion of CNNs and statistical indicators to improve image
classification [65.51757376525798]
畳み込みネットワークは過去10年間、コンピュータビジョンの分野を支配してきた。
この傾向を長引かせる主要な戦略は、ネットワーク規模の拡大によるものだ。
我々は、異種情報ソースを追加することは、より大きなネットワークを構築するよりもCNNにとって費用対効果が高いと仮定している。
論文 参考訳(メタデータ) (2020-12-20T23:24:31Z) - Attentive CutMix: An Enhanced Data Augmentation Approach for Deep
Learning Based Image Classification [58.20132466198622]
そこで我々は,CutMixに基づく自然拡張拡張戦略であるAttentive CutMixを提案する。
各トレーニングイテレーションにおいて、特徴抽出器から中間注意マップに基づいて最も記述性の高い領域を選択する。
提案手法は単純かつ有効であり,実装が容易であり,ベースラインを大幅に向上させることができる。
論文 参考訳(メタデータ) (2020-03-29T15:01:05Z) - Curriculum By Smoothing [52.08553521577014]
畳み込みニューラルネットワーク(CNN)は、画像分類、検出、セグメンテーションなどのコンピュータビジョンタスクにおいて顕著な性能を示している。
アンチエイリアスフィルタやローパスフィルタを用いてCNNの機能埋め込みを円滑化するエレガントなカリキュラムベースのスキームを提案する。
トレーニング中に特徴マップ内の情報量が増加するにつれて、ネットワークはデータのより優れた表現を徐々に学習することができる。
論文 参考訳(メタデータ) (2020-03-03T07:27:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。