論文の概要: Code Security Vulnerability Repair Using Reinforcement Learning with
Large Language Models
- arxiv url: http://arxiv.org/abs/2401.07031v1
- Date: Sat, 13 Jan 2024 10:19:26 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-17 20:07:01.487504
- Title: Code Security Vulnerability Repair Using Reinforcement Learning with
Large Language Models
- Title(参考訳): 大規模言語モデルを用いた強化学習を用いたコードセキュリティ脆弱性修復
- Authors: Nafis Tanveer Islam, Peyman Najafirad
- Abstract要約: 大規模言語モデル(LLM)から生成されたコードのセキュリティ強化と強化のための強化学習に基づく手法を提案する。
本研究では,コードにセキュリティと機能的対策を加えることに集中する意味的報酬機構と統語的報酬機構を組み合わせることで,プログラム固有の修復を行うための強化学習手法を提案する。
- 参考スコア(独自算出の注目度): 2.0523237073423695
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: With the recent advancement of Large Language Models (LLMs), generating
functionally correct code has become less complicated for a wide array of
developers. While using LLMs has sped up the functional development process, it
poses a heavy risk to code security. Code generation with proper security
measures using LLM is a significantly more challenging task than functional
code generation. Security measures may include adding a pair of lines of code
with the original code, consisting of null pointer checking or prepared
statements for SQL injection prevention. Currently, available code repair LLMs
generate code repair by supervised fine-tuning, where the model looks at
cross-entropy loss. However, the original and repaired codes are mostly similar
in functionality and syntactically, except for a few (1-2) lines, which act as
security measures. This imbalance between the lines needed for security
measures and the functional code enforces the supervised fine-tuned model to
prioritize generating functional code without adding proper security measures,
which also benefits the model by resulting in minimal loss. Therefore, in this
work, for security hardening and strengthening of generated code from LLMs, we
propose a reinforcement learning-based method for program-specific repair with
the combination of semantic and syntactic reward mechanisms that focus heavily
on adding security and functional measures in the code, respectively.
- Abstract(参考訳): 最近のLarge Language Models (LLMs) の進歩により、幅広い開発者にとって機能的に正しいコードの生成はより複雑になってきている。
LLMを使用すると、機能開発プロセスが加速する一方で、コードのセキュリティに大きなリスクが生じる。
LLMを使った適切なセキュリティ対策によるコード生成は、機能コード生成よりもはるかに難しい作業である。
セキュリティ対策には、SQLインジェクション防止のためのnullポインタチェックまたは準備されたステートメントで構成される、元のコードに一対のコードを追加することが含まれる。
現在、利用可能なコード修復 LLM は、教師付き微調整によってコード修復を生成する。
しかし、元のコードと修復されたコードは、セキュリティ対策として機能する (1-2) 行を除いて、機能と構文的にほとんど似ている。
このセキュリティ対策に必要なラインと機能的コードとの間の不均衡は、適切なセキュリティ対策を加えることなく機能的コードを生成する優先順位付けを教師付き微調整モデルに強制する。
そこで本研究では,LLMから生成したコードのセキュリティ強化と強化のために,コードにセキュリティと機能的対策を加えることに集中する意味的報酬機構と構文的報酬機構を組み合わせた,プログラム固有の修復のための強化学習手法を提案する。
関連論文リスト
- HexaCoder: Secure Code Generation via Oracle-Guided Synthetic Training Data [60.75578581719921]
大規模言語モデル(LLM)は、自動コード生成に大きな可能性を示している。
最近の研究は、多くのLLM生成コードが深刻なセキュリティ脆弱性を含んでいることを強調している。
我々は,LLMがセキュアなコードを生成する能力を高めるための新しいアプローチであるHexaCoderを紹介する。
論文 参考訳(メタデータ) (2024-09-10T12:01:43Z) - An LLM-Assisted Easy-to-Trigger Backdoor Attack on Code Completion Models: Injecting Disguised Vulnerabilities against Strong Detection [17.948513691133037]
我々は,コード補完モデルに基づくLLM支援バックドアアタックフレームワークであるCodeBreakerを紹介した。
悪意のあるペイロードを最小限の変換でソースコードに直接統合することで、CodeBreakerは現在のセキュリティ対策に挑戦する。
論文 参考訳(メタデータ) (2024-06-10T22:10:05Z) - Constrained Decoding for Secure Code Generation [9.007821185927277]
本稿では、コードLLMがセキュアかつ正しいコードを生成する能力を測定するための新しいベンチマークであるCodeGuard+を紹介する。
我々は,現在最先端の防御技術であるプレフィックスチューニングが,セキュアなコードを生成するが機能的正当性を犠牲にしているため,従来考えられていたほど強力ではないことを示す。
セキュアなコードを生成するための制約付き復号法を提案する。
論文 参考訳(メタデータ) (2024-04-30T21:52:19Z) - CodeIP: A Grammar-Guided Multi-Bit Watermark for Large Language Models of Code [56.019447113206006]
大規模言語モデル(LLM)はコード生成において顕著な進歩を遂げた。
CodeIPは、新しいマルチビット透かし技術で、出所の詳細を保存するために追加情報を埋め込む。
5つのプログラミング言語にまたがる実世界のデータセットで実施された実験は、CodeIPの有効性を実証している。
論文 参考訳(メタデータ) (2024-04-24T04:25:04Z) - CodeAttack: Revealing Safety Generalization Challenges of Large Language Models via Code Completion [117.178835165855]
本稿では,自然言語入力をコード入力に変換するフレームワークであるCodeAttackを紹介する。
我々の研究は、コード入力に対するこれらのモデルの新たな、普遍的な安全性の脆弱性を明らかにした。
CodeAttackと自然言語の分布ギャップが大きくなると、安全性の一般化が弱くなる。
論文 参考訳(メタデータ) (2024-03-12T17:55:38Z) - StepCoder: Improve Code Generation with Reinforcement Learning from
Compiler Feedback [58.20547418182074]
2つの主要コンポーネントからなるコード生成の新しいフレームワークであるStepCoderを紹介します。
CCCSは、長いシーケンスのコード生成タスクをCurriculum of Code Completion Subtaskに分割することで、探索課題に対処する。
FGOは、未実行のコードセグメントをマスクすることでのみモデルを最適化し、Fine-Grained Optimizationを提供する。
提案手法は,出力空間を探索し,対応するベンチマークにおいて最先端の手法より優れた性能を発揮する。
論文 参考訳(メタデータ) (2024-02-02T13:14:31Z) - LLM-Powered Code Vulnerability Repair with Reinforcement Learning and
Semantic Reward [3.729516018513228]
我々は,大規模な言語モデルであるCodeGen2を利用した多目的コード脆弱性解析システム texttSecRepair を導入する。
そこで本研究では,LLMを用いた脆弱性解析に適した命令ベースデータセットを提案する。
GitHub上の6つのオープンソースIoTオペレーティングシステムにおいて、ゼロデイとNデイの脆弱性を特定します。
論文 参考訳(メタデータ) (2024-01-07T02:46:39Z) - SALLM: Security Assessment of Generated Code [0.5137309756089941]
本稿では,セキュアなコードを体系的に生成する大規模言語モデルの能力をベンチマークするフレームワークであるSALLMについて述べる。
フレームワークには3つの主要なコンポーネントがある。セキュリティ中心のPythonプロンプトの新たなデータセット、生成されたコードを評価するための評価テクニック、セキュアなコード生成の観点からモデルのパフォーマンスを評価するための新しいメトリクスである。
論文 参考訳(メタデータ) (2023-11-01T22:46:31Z) - CodeT5+: Open Code Large Language Models for Code Understanding and
Generation [72.1638273937025]
大きな言語モデル (LLM) は膨大なソースコードで事前訓練されており、コードインテリジェンスにおいて顕著な進歩を遂げている。
CodeT5+は、コンポーネントモジュールを柔軟に組み合わせて、幅広い下流のコードタスクに適合させることができるコードのためのエンコーダ-デコーダLLMのファミリーである。
我々は、ゼロショット、微調整、命令調整を含む20以上のコード関連ベンチマークでCodeT5+を広範囲に評価した。
論文 参考訳(メタデータ) (2023-05-13T14:23:07Z) - CodeLMSec Benchmark: Systematically Evaluating and Finding Security
Vulnerabilities in Black-Box Code Language Models [58.27254444280376]
自動コード生成のための大規模言語モデル(LLM)は、いくつかのプログラミングタスクにおいてブレークスルーを達成した。
これらのモデルのトレーニングデータは、通常、インターネット(例えばオープンソースのリポジトリから)から収集され、障害やセキュリティ上の脆弱性を含む可能性がある。
この不衛生なトレーニングデータは、言語モデルにこれらの脆弱性を学習させ、コード生成手順中にそれを伝播させる可能性がある。
論文 参考訳(メタデータ) (2023-02-08T11:54:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。