論文の概要: Distilling Event Sequence Knowledge From Large Language Models
- arxiv url: http://arxiv.org/abs/2401.07237v2
- Date: Tue, 6 Feb 2024 14:50:32 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-07 19:15:14.825092
- Title: Distilling Event Sequence Knowledge From Large Language Models
- Title(参考訳): 大規模言語モデルからのイベントシーケンス知識の蒸留
- Authors: Somin Wadhwa, Oktie Hassanzadeh, Debarun Bhattacharjya, Ken Barker,
Jian Ni
- Abstract要約: イベントシーケンスモデルは、イベントの分析と予測に非常に効果的であることが判明した。
我々は大規模言語モデルを用いて、確率的イベントモデル構築に効果的に使用できるイベントシーケンスを生成する。
提案手法は,入力KGの知識ギャップを埋めて,高品質なイベントシーケンスを生成することができることを示す。
- 参考スコア(独自算出の注目度): 18.352009785688217
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Event sequence models have been found to be highly effective in the analysis
and prediction of events. Building such models requires availability of
abundant high-quality event sequence data. In certain applications, however,
clean structured event sequences are not available, and automated sequence
extraction results in data that is too noisy and incomplete. In this work, we
explore the use of Large Language Models (LLMs) to generate event sequences
that can effectively be used for probabilistic event model construction. This
can be viewed as a mechanism of distilling event sequence knowledge from LLMs.
Our approach relies on a Knowledge Graph (KG) of event concepts with partial
causal relations to guide the generative language model for causal event
sequence generation. We show that our approach can generate high-quality event
sequences, filling a knowledge gap in the input KG. Furthermore, we explore how
the generated sequences can be leveraged to discover useful and more complex
structured knowledge from pattern mining and probabilistic event models. We
release our sequence generation code and evaluation framework, as well as
corpus of event sequence data.
- Abstract(参考訳): イベントシーケンスモデルは、イベントの分析と予測に非常に有効であることが判明している。
このようなモデルの構築には、豊富な高品質なイベントシーケンスデータが必要になる。
しかし、特定のアプリケーションでは、クリーンな構造化されたイベントシーケンスは利用できず、自動シーケンス抽出はノイズが多く不完全なデータをもたらす。
本研究では,確率的イベントモデル構築に効果的に使用できるイベントシーケンスを生成するための大規模言語モデル(llm)の利用を検討する。
これは、LLMからイベントシーケンス知識を蒸留するメカニズムと見なすことができる。
本手法は、因果関係を持つ事象概念の知識グラフ(KG)を用いて、因果関係生成のための生成言語モデルを導出する。
提案手法は,入力KGの知識ギャップを埋めて,高品質なイベントシーケンスを生成することができることを示す。
さらに,パターンマイニングや確率的イベントモデルから有用で複雑な構造化知識を発見するために,生成されたシーケンスをどのように活用するかを検討する。
我々は、シーケンス生成コードと評価フレームワーク、およびイベントシーケンスデータのコーパスをリリースする。
関連論文リスト
- Improving Event Definition Following For Zero-Shot Event Detection [66.27883872707523]
ゼロショットイベント検出に対する既存のアプローチは通常、既知のイベントタイプをアノテートしたデータセット上でモデルをトレーニングする。
イベント定義に従うためのトレーニングモデルによるゼロショットイベント検出の改善を目指しています。
論文 参考訳(メタデータ) (2024-03-05T01:46:50Z) - Towards Out-of-Distribution Sequential Event Prediction: A Causal
Treatment [72.50906475214457]
シーケンシャルなイベント予測の目標は、一連の歴史的なイベントに基づいて次のイベントを見積もることである。
実際には、次のイベント予測モデルは、一度に収集されたシーケンシャルなデータで訓練される。
文脈固有の表現を学習するための階層的な分岐構造を持つフレームワークを提案する。
論文 参考訳(メタデータ) (2022-10-24T07:54:13Z) - NGEP: A Graph-based Event Planning Framework for Story Generation [17.049035309926637]
本稿では,自動構築されたイベントグラフ上で推論を行い,イベントシーケンスを生成する新しいイベント計画フレームワークNGEPを提案する。
我々は、複数の基準で様々な実験を行い、その結果、グラフベースのニューラルネットワークは、最先端(SOTA)イベント計画アプローチよりも優れていることを示した。
論文 参考訳(メタデータ) (2022-10-19T14:49:27Z) - Summary Markov Models for Event Sequences [23.777457032885813]
我々は,意味のあるタイムスタンプを使わずに,異なる種類のイベントのシーケンスのモデル群を提案する。
イベントタイプを観測する確率は、そのイベントタイプの影響するセットの歴史的発生の要約にのみ依存する。
興味のあるイベントの種類や要約関数の選択には、一意に最小限の影響セットが存在することを示す。
論文 参考訳(メタデータ) (2022-05-06T17:16:24Z) - Event Data Association via Robust Model Fitting for Event-based Object Tracking [66.05728523166755]
本稿では,イベントアソシエーションと融合問題に明示的に対処する新しいイベントデータアソシエーション(EDA)手法を提案する。
提案するEDAは、統合データアソシエーションと情報融合を行うために、イベントデータに最も適したイベントトラジェクトリを求める。
実験結果から,高速,運動のぼやけ,高ダイナミックレンジ条件といった難易度シナリオ下でのEDAの有効性が示された。
論文 参考訳(メタデータ) (2021-10-25T13:56:00Z) - Robust Event Classification Using Imperfect Real-world PMU Data [58.26737360525643]
本研究では,不完全な実世界のファサー計測単位(PMU)データを用いて,ロバストな事象分類について検討する。
我々は、堅牢なイベント分類器を訓練するための新しい機械学習フレームワークを開発する。
論文 参考訳(メタデータ) (2021-10-19T17:41:43Z) - Complex Event Forecasting with Prediction Suffix Trees: Extended
Technical Report [70.7321040534471]
複合イベント認識(CER)システムは、イベントのリアルタイムストリーム上のパターンを"即時"検出する能力によって、過去20年間に人気が高まっている。
このような現象が実際にCERエンジンによって検出される前に、パターンがいつ発生するかを予測する方法が不足している。
複雑なイベント予測の問題に対処しようとする形式的なフレームワークを提案する。
論文 参考訳(メタデータ) (2021-09-01T09:52:31Z) - Text2Event: Controllable Sequence-to-Structure Generation for End-to-end
Event Extraction [35.39643772926177]
イベントの抽出は、イベントレコードの複雑な構造と、テキストとイベント間のセマンティックなギャップのために難しい。
従来の方法では、複雑な構造予測タスクを複数のサブタスクに分解することでイベントレコードを抽出する。
エンドツーエンドでテキストからイベントを直接抽出できるシーケンス・ツー・構造生成パラダイムであるText2Eventを提案する。
論文 参考訳(メタデータ) (2021-06-17T04:00:18Z) - COHORTNEY: Deep Clustering for Heterogeneous Event Sequences [9.811178291117496]
イベントシーケンスのクラスタリングは、ヘルスケア、マーケティング、金融などの分野で広く適用されます。
異種事象列をクラスタリングするための新しい深層学習手法としてCOHORTNEYを提案する。
その結果,cohortneyは,イベントシーケンスをクラスタリングする最先端アルゴリズムの速度とクラスタ品質を大きく上回っていることがわかった。
論文 参考訳(メタデータ) (2021-04-03T16:12:21Z) - Conditional Generation of Temporally-ordered Event Sequences [29.44608199294757]
本稿では,イベントシーケンスの時間性だけでなく,イベント共起を捉えることができる条件生成モデルを提案する。
この単一モデルは、時間的順序付け、与えられたイベント列をそれらが発生した順序にソートすること、イベントを埋め込むことの両方に対処でき、既存のイベントの時間的順序付けシーケンスに適合する新しいイベントを予測できる。
論文 参考訳(メタデータ) (2020-12-31T18:10:18Z) - Team RUC_AIM3 Technical Report at Activitynet 2020 Task 2: Exploring
Sequential Events Detection for Dense Video Captioning [63.91369308085091]
本稿では、イベントシーケンス生成のための新規でシンプルなモデルを提案し、ビデオ中のイベントシーケンスの時間的関係を探索する。
提案モデルでは,非効率な2段階提案生成を省略し,双方向時間依存性を条件としたイベント境界を直接生成する。
総合システムは、チャレンジテストセットの9.894 METEORスコアで、ビデオタスクにおける密封イベントの最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2020-06-14T13:21:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。