論文の概要: Beyond Traditional Approaches: Multi-Task Network for Breast Ultrasound
Diagnosis
- arxiv url: http://arxiv.org/abs/2401.07326v1
- Date: Sun, 14 Jan 2024 16:24:47 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-17 18:42:14.675174
- Title: Beyond Traditional Approaches: Multi-Task Network for Breast Ultrasound
Diagnosis
- Title(参考訳): 従来のアプローチを超えて:乳房超音波診断のためのマルチタスクネットワーク
- Authors: Dat T. Chung, Minh-Anh Dang, Mai-Anh Vu, Minh T. Nguyen, Thanh-Huy
Nguyen, and Vinh Q. Dinh
- Abstract要約: CNNベースのアプローチは、腫瘍の局在化とがんの分類タスクの両方で広く研究されている。
本研究では,分割と分類の両方を行うために,エンド・ツー・エンドのマルチタスクアーキテクチャを再設計し,構築することを目的とする。
提案手法では,セグメンテーションタスクにおけるDeepLabV3+アーキテクチャの79.8%と86.4%で,優れた性能と時間効率を実現した。
- 参考スコア(独自算出の注目度): 1.4953643992734458
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Breast Ultrasound plays a vital role in cancer diagnosis as a non-invasive
approach with cost-effective. In recent years, with the development of deep
learning, many CNN-based approaches have been widely researched in both tumor
localization and cancer classification tasks. Even though previous single
models achieved great performance in both tasks, these methods have some
limitations in inference time, GPU requirement, and separate fine-tuning for
each model. In this study, we aim to redesign and build end-to-end multi-task
architecture to conduct both segmentation and classification. With our proposed
approach, we achieved outstanding performance and time efficiency, with 79.8%
and 86.4% in DeepLabV3+ architecture in the segmentation task.
- Abstract(参考訳): 乳腺超音波は非侵襲的アプローチとして癌診断において重要な役割を担っている。
近年、深層学習の発展に伴い、腫瘍の局在化と癌分類のタスクにおいて多くのCNNベースのアプローチが研究されている。
従来のシングルモデルは両方のタスクで優れたパフォーマンスを達成したが、これらのメソッドは推論時間、GPU要求、各モデルの微調整にいくつかの制限がある。
本研究では,分割と分類の両方を行うために,エンドツーエンドのマルチタスクアーキテクチャを再設計し,構築することを目的とする。
提案手法では,セグメンテーションタスクにおけるDeepLabV3+アーキテクチャの79.8%と86.4%で,優れた性能と時間効率を実現した。
関連論文リスト
- CU-Net: a U-Net architecture for efficient brain-tumor segmentation on BraTS 2019 dataset [0.0]
そこで本研究では,BraTS 2019データセットを用いた脳腫瘍セグメンテーションのためのColumbia-University-Netアーキテクチャの新たな実装を提案する。
CU-Netモデルは対称なU字型構造を持ち、畳み込み層、最大プーリング、アップサンプリング演算を用いて高分解能セグメンテーションを実現する。
論文 参考訳(メタデータ) (2024-06-19T00:01:01Z) - An Optimization Framework for Processing and Transfer Learning for the
Brain Tumor Segmentation [2.0886519175557368]
我々は脳腫瘍セグメント化のための3次元U-Netモデルに基づく最適化フレームワークを構築した。
このフレームワークには、さまざまな前処理や後処理技術、トランスファーラーニングなど、さまざまなテクニックが組み込まれている。
検証データセット上で、この多モード脳腫瘍セグメンテーションフレームワークは、それぞれチャレンジ1、2、3におけるDiceスコア平均0.79、0.72、0.74を達成する。
論文 参考訳(メタデータ) (2024-02-10T18:03:15Z) - EMT-NET: Efficient multitask network for computer-aided diagnosis of
breast cancer [58.720142291102135]
乳腺腫瘍の分類と分別を同時に行うための,効率的で軽量な学習アーキテクチャを提案する。
腫瘍分類ネットワークにセグメンテーションタスクを組み込むことにより,腫瘍領域に着目したバックボーンネットワークで表現を学習する。
腫瘍分類の精度、感度、特異性はそれぞれ88.6%、94.1%、85.3%である。
論文 参考訳(メタデータ) (2022-01-13T05:24:40Z) - Multiple Time Series Fusion Based on LSTM An Application to CAP A Phase
Classification Using EEG [56.155331323304]
本研究では,深層学習に基づく脳波チャンネルの特徴レベル融合を行う。
チャネル選択,融合,分類手順を2つの最適化アルゴリズムで最適化した。
論文 参考訳(メタデータ) (2021-12-18T14:17:49Z) - ProCAN: Progressive Growing Channel Attentive Non-Local Network for Lung
Nodule Classification [0.0]
CT検診における肺癌の分類は,早期発見の最も重要な課題の一つである。
近年、肺結節を悪性または良性に分類する深層学習モデルが提案されている。
肺結節分類のためのProCAN(Progressive Growing Channel Attentive Non-Local)ネットワークを提案する。
論文 参考訳(メタデータ) (2020-10-29T08:42:11Z) - Modality-Pairing Learning for Brain Tumor Segmentation [34.58078431696929]
そこで我々は,脳腫瘍セグメンテーションのための新しいエンド・ツー・エンドモダリティペアリング学習法を提案する。
提案手法はBraTS 2020オンラインテストデータセット上でテストされ,有望なセグメンテーション性能が得られた。
論文 参考訳(メタデータ) (2020-10-19T07:42:10Z) - Automatic Breast Lesion Classification by Joint Neural Analysis of
Mammography and Ultrasound [1.9814912982226993]
そこで本研究では,乳がん病変を各乳腺造影像および超音波画像から分類する深層学習法を提案する。
提案されたアプローチは、GoogleNetアーキテクチャに基づいており、データのために2つのトレーニングステップで微調整されています。
AUCは0.94で、単一のモダリティで訓練された最先端のモデルより優れている。
論文 参考訳(メタデータ) (2020-09-23T09:08:24Z) - A Global Benchmark of Algorithms for Segmenting Late Gadolinium-Enhanced
Cardiac Magnetic Resonance Imaging [90.29017019187282]
現在世界最大の心臓LGE-MRIデータセットである154個の3D LGE-MRIを用いた「2018 left Atrium Challenge」。
技術および生物学的指標を用いた提案アルゴリズムの解析を行った。
その結果, 最上部法は93.2%, 平均表面は0.7mmであった。
論文 参考訳(メタデータ) (2020-04-26T08:49:17Z) - Stan: Small tumor-aware network for breast ultrasound image segmentation [68.8204255655161]
本研究では,小腫瘍認識ネットワーク(Small tumor-Aware Network,STAN)と呼ばれる新しいディープラーニングアーキテクチャを提案する。
提案手法は, 乳腺腫瘍の分節化における最先端のアプローチよりも優れていた。
論文 参考訳(メタデータ) (2020-02-03T22:25:01Z) - Unpaired Multi-modal Segmentation via Knowledge Distillation [77.39798870702174]
本稿では,不対向画像分割のための新しい学習手法を提案する。
提案手法では,CTおよびMRI間での畳み込みカーネルの共有により,ネットワークパラメータを多用する。
我々は2つの多クラスセグメンテーション問題に対するアプローチを広範囲に検証した。
論文 参考訳(メタデータ) (2020-01-06T20:03:17Z) - Opportunities and Challenges of Deep Learning Methods for
Electrocardiogram Data: A Systematic Review [62.490310870300746]
心電図(Electrocardiogram、ECG)は、医学および医療において最も一般的に用いられる診断ツールの1つである。
深層学習法は心電図信号を用いた予測医療タスクにおいて有望な結果を得た。
本稿では、モデリングとアプリケーションの観点から、ECGデータに対するディープラーニング手法の体系的なレビューを行う。
論文 参考訳(メタデータ) (2019-12-28T02:44:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。