論文の概要: Efficient Brain Tumor Segmentation Using a Dual-Decoder 3D U-Net with Attention Gates (DDUNet)
- arxiv url: http://arxiv.org/abs/2504.13200v1
- Date: Mon, 14 Apr 2025 22:45:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-28 21:08:30.590812
- Title: Efficient Brain Tumor Segmentation Using a Dual-Decoder 3D U-Net with Attention Gates (DDUNet)
- Title(参考訳): Dual-Decoder 3D U-Net(DDUNet)を用いた高能率脳腫瘍切除
- Authors: Mohammad Mahdi Danesh Pajouh,
- Abstract要約: がんは世界中で死亡する主要な原因の1つであり、その多くの形態の中で、脳腫瘍は特に悪名高い。
人工知能の最近の進歩は、正確な腫瘍分割を行う医療専門家を支援することに大きな期待を示している。
本稿では,MRI スキャンによる脳腫瘍の分節化に特化して設計された,アテンションゲート型スキップ接続により拡張された新しいデュアルデコーダ U-Net アーキテクチャを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Cancer remains one of the leading causes of mortality worldwide, and among its many forms, brain tumors are particularly notorious due to their aggressive nature and the critical challenges involved in early diagnosis. Recent advances in artificial intelligence have shown great promise in assisting medical professionals with precise tumor segmentation, a key step in timely diagnosis and treatment planning. However, many state-of-the-art segmentation methods require extensive computational resources and prolonged training times, limiting their practical application in resource-constrained settings. In this work, we present a novel dual-decoder U-Net architecture enhanced with attention-gated skip connections, designed specifically for brain tumor segmentation from MRI scans. Our approach balances efficiency and accuracy by achieving competitive segmentation performance while significantly reducing training demands. Evaluated on the BraTS 2020 dataset, the proposed model achieved Dice scores of 85.06% for Whole Tumor (WT), 80.61% for Tumor Core (TC), and 71.26% for Enhancing Tumor (ET) in only 50 epochs, surpassing several commonly used U-Net variants. Our model demonstrates that high-quality brain tumor segmentation is attainable even under limited computational resources, thereby offering a viable solution for researchers and clinicians operating with modest hardware. This resource-efficient model has the potential to improve early detection and diagnosis of brain tumors, ultimately contributing to better patient outcomes
- Abstract(参考訳): がんは世界中で死に至る主要な原因の1つであり、その多くの形態の中で、脳腫瘍は攻撃的な性質と早期診断に関わる重要な課題のために特に悪名高い。
近年の人工知能の進歩は、タイムリーな診断と治療計画における重要なステップである、正確な腫瘍の分節化を医療専門家に支援する大きな可能性を示している。
しかし、多くの最先端セグメンテーション手法は、広範囲の計算資源と長期の訓練時間を必要とし、リソース制約された設定における実践的応用を制限する。
本研究では,MRI スキャンによる脳腫瘍の分節化に特化して設計された,アテンションゲート型スキップ接続により拡張された新しいデュアルデコーダ U-Net アーキテクチャを提案する。
提案手法は,トレーニング要求を著しく低減しつつ,競合セグメンテーション性能を達成し,効率と精度のバランスをとる。
BraTS 2020データセットで評価され、提案されたモデルでは、全腫瘍(WT)が85.06%、腫瘍コア(TC)が80.61%、腫瘍のエンハンシング(ET)が71.26%に達し、U-Netの変種を数回上回った。
本モデルでは, 計算資源が限られている場合でも, 高品質な脳腫瘍セグメント化が実現可能であることを示し, 軽度ハードウェアを運用する研究者や臨床医に実現可能なソリューションを提供する。
この資源効率の良いモデルには、脳腫瘍の早期発見と診断を改善する可能性があり、最終的には患者の結果に寄与する
関連論文リスト
- MAST-Pro: Dynamic Mixture-of-Experts for Adaptive Segmentation of Pan-Tumors with Knowledge-Driven Prompts [54.915060471994686]
MAST-Proは,ダイナミックなMixture-of-Experts(D-MoE)とパン腫瘍セグメンテーションのための知識駆動プロンプトを統合した新しいフレームワークである。
具体的には、テキストと解剖学的プロンプトは、腫瘍表現学習を導くドメイン固有の事前情報を提供し、D-MoEは、ジェネリックと腫瘍固有の特徴学習のバランスをとる専門家を動的に選択する。
マルチ解剖学的腫瘍データセットの実験では、MAST-Proは最先端のアプローチよりも優れており、トレーニング可能なパラメータを91.04%削減し、平均改善の5.20%を達成している。
論文 参考訳(メタデータ) (2025-03-18T15:39:44Z) - Deep Ensemble approach for Enhancing Brain Tumor Segmentation in Resource-Limited Settings [4.022491041135248]
本研究では, グリオーマのセマンティックセグメンテーションのために, UNet3D, V-Net, MSA-VNetモデルを統合した深層学習アンサンブルを開発する。
DICEスコアは腫瘍コア0.8358、全腫瘍0.8521、腫瘍エンハンス0.8167である。
論文 参考訳(メタデータ) (2025-02-04T09:53:09Z) - Hybrid Multihead Attentive Unet-3D for Brain Tumor Segmentation [0.0]
脳腫瘍のセグメンテーションは、医療画像解析において重要な課題であり、脳腫瘍患者の診断と治療計画を支援する。
様々な深層学習技術がこの分野で大きな進歩を遂げてきたが、脳腫瘍形態の複雑で変動的な性質のため、精度の面ではまだ限界に直面している。
本稿では,脳腫瘍の正確なセグメンテーションにおける課題を解決するために,新しいハイブリッドマルチヘッド注意型U-Netアーキテクチャを提案する。
論文 参考訳(メタデータ) (2024-05-22T02:46:26Z) - A Novel SLCA-UNet Architecture for Automatic MRI Brain Tumor
Segmentation [0.0]
脳腫瘍は、個人の寿命を減少させる深刻な健康上の合併症の1つである。
脳腫瘍のタイムリーな検出と予測は、脳腫瘍による死亡率の予防に役立つ。
ディープラーニングベースのアプローチは、自動化バイオメディカル画像探索ツールを開発するための有望なソリューションとして登場した。
論文 参考訳(メタデータ) (2023-07-16T14:06:45Z) - An Optimized Ensemble Deep Learning Model For Brain Tumor Classification [3.072340427031969]
脳腫瘍の不正確な同定は、寿命を著しく低下させる。
本研究は,脳腫瘍を効率よく分類するための伝達学習(TL)を用いた,革新的な最適化に基づく深層アンサンブル手法を提案する。
Xception, ResNet50V2, ResNet152V2, InceptionResNetV2, GAWO, GSWOはそれぞれ99.42%, 98.37%, 98.22%, 98.26%, 99.71%, 99.76%に達した。
論文 参考訳(メタデータ) (2023-05-22T09:08:59Z) - Prediction of brain tumor recurrence location based on multi-modal
fusion and nonlinear correlation learning [55.789874096142285]
深層学習に基づく脳腫瘍再発位置予測ネットワークを提案する。
まず、パブリックデータセットBraTS 2021上で、マルチモーダル脳腫瘍セグメンテーションネットワークをトレーニングする。
次に、事前訓練されたエンコーダを、リッチなセマンティックな特徴を抽出するために、プライベートデータセットに転送する。
2つのデコーダは、現在の脳腫瘍を共同に分断し、将来の腫瘍再発位置を予測するために構築されている。
論文 参考訳(メタデータ) (2023-04-11T02:45:38Z) - EMT-NET: Efficient multitask network for computer-aided diagnosis of
breast cancer [58.720142291102135]
乳腺腫瘍の分類と分別を同時に行うための,効率的で軽量な学習アーキテクチャを提案する。
腫瘍分類ネットワークにセグメンテーションタスクを組み込むことにより,腫瘍領域に着目したバックボーンネットワークで表現を学習する。
腫瘍分類の精度、感度、特異性はそれぞれ88.6%、94.1%、85.3%である。
論文 参考訳(メタデータ) (2022-01-13T05:24:40Z) - Redundancy Reduction in Semantic Segmentation of 3D Brain Tumor MRIs [2.946960157989204]
この研究は、摂動下での冗長性を最小化するネットワークトレーニングプロセスの修正である。
腫瘍コア, 腫瘍コア, 全腫瘍に対して, 0.8600, 0.8868, 0.9265平均ダイスを得た。
私たちのチーム(NVAUTO)の応募は、ETとTCのスコアで上位10チーム、WTのスコアで上位10チームだった。
論文 参考訳(メタデータ) (2021-11-01T07:39:06Z) - H2NF-Net for Brain Tumor Segmentation using Multimodal MR Imaging: 2nd
Place Solution to BraTS Challenge 2020 Segmentation Task [96.49879910148854]
当社のH2NF-Netは、単一およびカスケードのHNF-Netを使用して、異なる脳腫瘍サブリージョンを分割します。
我々は、マルチモーダル脳腫瘍チャレンジ(BraTS)2020データセットでモデルをトレーニングし、評価した。
提案手法は,80名近い参加者のうち,brats 2020チャレンジセグメンテーションタスクで2位となった。
論文 参考訳(メタデータ) (2020-12-30T20:44:55Z) - Brain tumor segmentation with self-ensembled, deeply-supervised 3D U-net
neural networks: a BraTS 2020 challenge solution [56.17099252139182]
U-netのようなニューラルネットワークを用いた脳腫瘍セグメント化作業の自動化と標準化を行う。
2つの独立したモデルのアンサンブルが訓練され、それぞれが脳腫瘍のセグメンテーションマップを作成した。
我々の解は、最終試験データセットにおいて、Diceの0.79、0.89、0.84、およびHausdorffの95%の20.4、6.7、19.5mmを達成した。
論文 参考訳(メタデータ) (2020-10-30T14:36:10Z) - Modality-Pairing Learning for Brain Tumor Segmentation [34.58078431696929]
そこで我々は,脳腫瘍セグメンテーションのための新しいエンド・ツー・エンドモダリティペアリング学習法を提案する。
提案手法はBraTS 2020オンラインテストデータセット上でテストされ,有望なセグメンテーション性能が得られた。
論文 参考訳(メタデータ) (2020-10-19T07:42:10Z) - Stan: Small tumor-aware network for breast ultrasound image segmentation [68.8204255655161]
本研究では,小腫瘍認識ネットワーク(Small tumor-Aware Network,STAN)と呼ばれる新しいディープラーニングアーキテクチャを提案する。
提案手法は, 乳腺腫瘍の分節化における最先端のアプローチよりも優れていた。
論文 参考訳(メタデータ) (2020-02-03T22:25:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。