How do machines learn? Evaluating the AIcon2abs method
- URL: http://arxiv.org/abs/2401.07386v4
- Date: Sun, 29 Dec 2024 14:54:43 GMT
- Title: How do machines learn? Evaluating the AIcon2abs method
- Authors: Rubens Lacerda Queiroz, Cabral Lima, Fabio Ferrentini Sampaio, Priscila Machado Vieira Lima,
- Abstract summary: This study is an expansion of a previous work aiming to evaluate the AIcon2abs method (AI from Concrete to Abstract: Demystifying Artificial Intelligence to the general public)
The approach employs the WiSARD algorithm, a weightless neural network known for its simplicity, and user accessibility.
WiSARD does not require Internet, making it ideal for non-technical users and resource-limited environments.
- Score: 0.0
- License:
- Abstract: This study is an expansion of a previous work aiming to evaluate the AIcon2abs method (AI from Concrete to Abstract: Demystifying Artificial Intelligence to the general public), an innovative method aimed at increasing the public (including children) understanding of machine learning (ML). The approach employs the WiSARD algorithm, a weightless neural network known for its simplicity, and user accessibility. WiSARD does not require Internet, making it ideal for non-technical users and resource-limited environments. This method enables participants to intuitively visualize and interact with ML processes through engaging, hands-on activities, as if they were the algorithms themselves. The method allows users to intuitively visualize and understand the internal processes of training and classification through practical activities. Once WiSARDs functionality does not require an Internet connection, it can learn effectively from a minimal dataset, even from a single example. This feature enables users to observe how the machine improves its accuracy incrementally as it receives more data. Moreover, WiSARD generates mental images representing what it has learned, highlighting essential features of the classified data. AIcon2abs was tested through a six-hour remote course with 34 Brazilian participants, including 5 children, 5 adolescents, and 24 adults. Data analysis was conducted from two perspectives: a mixed-method pre-experiment (including hypothesis testing), and a qualitative phenomenological analysis. Nearly all participants rated AIcon2abs positively, with the results demonstrating a high degree of satisfaction in achieving the intended outcomes. This research was approved by the CEP-HUCFF-UFRJ Research Ethics Committee.
Related papers
- User-centric evaluation of explainability of AI with and for humans: a comprehensive empirical study [5.775094401949666]
This study is located in the Human-Centered Artificial Intelligence (HCAI)
It focuses on the results of a user-centered assessment of commonly used eXplainable Artificial Intelligence (XAI) algorithms.
arXiv Detail & Related papers (2024-10-21T12:32:39Z) - ExACT: Teaching AI Agents to Explore with Reflective-MCTS and Exploratory Learning [78.42927884000673]
ExACT is an approach to combine test-time search and self-learning to build o1-like models for agentic applications.
We first introduce Reflective Monte Carlo Tree Search (R-MCTS), a novel test time algorithm designed to enhance AI agents' ability to explore decision space on the fly.
Next, we introduce Exploratory Learning, a novel learning strategy to teach agents to search at inference time without relying on any external search algorithms.
arXiv Detail & Related papers (2024-10-02T21:42:35Z) - Learning Manipulation by Predicting Interaction [85.57297574510507]
We propose a general pre-training pipeline that learns Manipulation by Predicting the Interaction.
The experimental results demonstrate that MPI exhibits remarkable improvement by 10% to 64% compared with previous state-of-the-art in real-world robot platforms.
arXiv Detail & Related papers (2024-06-01T13:28:31Z) - OpenHEXAI: An Open-Source Framework for Human-Centered Evaluation of Explainable Machine Learning [43.87507227859493]
This paper presents OpenHEXAI, an open-source framework for human-centered evaluation of XAI methods.
OpenHEAXI is the first large-scale infrastructural effort to facilitate human-centered benchmarks of XAI methods.
arXiv Detail & Related papers (2024-02-20T22:17:59Z) - RLIF: Interactive Imitation Learning as Reinforcement Learning [56.997263135104504]
We show how off-policy reinforcement learning can enable improved performance under assumptions that are similar but potentially even more practical than those of interactive imitation learning.
Our proposed method uses reinforcement learning with user intervention signals themselves as rewards.
This relaxes the assumption that intervening experts in interactive imitation learning should be near-optimal and enables the algorithm to learn behaviors that improve over the potential suboptimal human expert.
arXiv Detail & Related papers (2023-11-21T21:05:21Z) - Human-Centric Multimodal Machine Learning: Recent Advances and Testbed
on AI-based Recruitment [66.91538273487379]
There is a certain consensus about the need to develop AI applications with a Human-Centric approach.
Human-Centric Machine Learning needs to be developed based on four main requirements: (i) utility and social good; (ii) privacy and data ownership; (iii) transparency and accountability; and (iv) fairness in AI-driven decision-making processes.
We study how current multimodal algorithms based on heterogeneous sources of information are affected by sensitive elements and inner biases in the data.
arXiv Detail & Related papers (2023-02-13T16:44:44Z) - Dissecting Self-Supervised Learning Methods for Surgical Computer Vision [51.370873913181605]
Self-Supervised Learning (SSL) methods have begun to gain traction in the general computer vision community.
The effectiveness of SSL methods in more complex and impactful domains, such as medicine and surgery, remains limited and unexplored.
We present an extensive analysis of the performance of these methods on the Cholec80 dataset for two fundamental and popular tasks in surgical context understanding, phase recognition and tool presence detection.
arXiv Detail & Related papers (2022-07-01T14:17:11Z) - Let's Go to the Alien Zoo: Introducing an Experimental Framework to
Study Usability of Counterfactual Explanations for Machine Learning [6.883906273999368]
Counterfactual explanations (CFEs) have gained traction as a psychologically grounded approach to generate post-hoc explanations.
We introduce the Alien Zoo, an engaging, web-based and game-inspired experimental framework.
As a proof of concept, we demonstrate the practical efficacy and feasibility of this approach in a user study.
arXiv Detail & Related papers (2022-05-06T17:57:05Z) - On the Marginal Benefit of Active Learning: Does Self-Supervision Eat
Its Cake? [31.563514432259897]
We present a novel framework integrating self-supervised pretraining, active learning, and consistency-regularized self-training.
Our experiments reveal two key insights: (i) Self-supervised pre-training significantly improves semi-supervised learning, especially in the few-label regime.
We fail to observe any additional benefit of state-of-the-art active learning algorithms when combined with state-of-the-art S4L techniques.
arXiv Detail & Related papers (2020-11-16T17:34:55Z) - Unsupervised Multi-Modal Representation Learning for Affective Computing
with Multi-Corpus Wearable Data [16.457778420360537]
We propose an unsupervised framework to reduce the reliance on human supervision.
The proposed framework utilizes two stacked convolutional autoencoders to learn latent representations from wearable electrocardiogram (ECG) and electrodermal activity (EDA) signals.
Our method outperforms current state-of-the-art results that have performed arousal detection on the same datasets.
arXiv Detail & Related papers (2020-08-24T22:01:55Z) - Omni-supervised Facial Expression Recognition via Distilled Data [120.11782405714234]
We propose omni-supervised learning to exploit reliable samples in a large amount of unlabeled data for network training.
We experimentally verify that the new dataset can significantly improve the ability of the learned FER model.
To tackle this, we propose to apply a dataset distillation strategy to compress the created dataset into several informative class-wise images.
arXiv Detail & Related papers (2020-05-18T09:36:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.