Detecting Unsuccessful Students in Cybersecurity Exercises in Two Different Learning Environments
- URL: http://arxiv.org/abs/2408.08531v1
- Date: Fri, 16 Aug 2024 04:57:54 GMT
- Title: Detecting Unsuccessful Students in Cybersecurity Exercises in Two Different Learning Environments
- Authors: Valdemar Švábenský, Kristián Tkáčik, Aubrey Birdwell, Richard Weiss, Ryan S. Baker, Pavel Čeleda, Jan Vykopal, Jens Mache, Ankur Chattopadhyay,
- Abstract summary: This paper develops automated tools to predict when a student is having difficulty.
In a potential application, such models can aid instructors in detecting struggling students and providing targeted help.
- Score: 0.37729165787434493
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This full paper in the research track evaluates the usage of data logged from cybersecurity exercises in order to predict students who are potentially at risk of performing poorly. Hands-on exercises are essential for learning since they enable students to practice their skills. In cybersecurity, hands-on exercises are often complex and require knowledge of many topics. Therefore, students may miss solutions due to gaps in their knowledge and become frustrated, which impedes their learning. Targeted aid by the instructor helps, but since the instructor's time is limited, efficient ways to detect struggling students are needed. This paper develops automated tools to predict when a student is having difficulty. We formed a dataset with the actions of 313 students from two countries and two learning environments: KYPO CRP and EDURange. These data are used in machine learning algorithms to predict the success of students in exercises deployed in these environments. After extracting features from the data, we trained and cross-validated eight classifiers for predicting the exercise outcome and evaluated their predictive power. The contribution of this paper is comparing two approaches to feature engineering, modeling, and classification performance on data from two learning environments. Using the features from either learning environment, we were able to detect and distinguish between successful and struggling students. A decision tree classifier achieved the highest balanced accuracy and sensitivity with data from both learning environments. The results show that activity data from cybersecurity exercises are suitable for predicting student success. In a potential application, such models can aid instructors in detecting struggling students and providing targeted help. We publish data and code for building these models so that others can adopt or adapt them.
Related papers
- RESTOR: Knowledge Recovery through Machine Unlearning [71.75834077528305]
Large language models trained on web-scale corpora can memorize undesirable datapoints.
Many machine unlearning methods have been proposed that aim to 'erase' these datapoints from trained models.
We propose the RESTOR framework for machine unlearning based on the following dimensions.
arXiv Detail & Related papers (2024-10-31T20:54:35Z) - ClickTree: A Tree-based Method for Predicting Math Students' Performance Based on Clickstream Data [0.0]
We developed ClickTree, a tree-based methodology, to predict student performance in mathematical assignments based on students' clickstream data.
The developed method achieved an AUC of 0.78844 in the Educational Data Mining Cup 2023 and ranked second in the competition.
Students who performed well in answering end-unit assignment problems engaged more with in-unit assignments and answered more problems correctly, while those who struggled had higher tutoring request rate.
arXiv Detail & Related papers (2024-03-01T23:39:03Z) - TOFU: A Task of Fictitious Unlearning for LLMs [99.92305790945507]
Large language models trained on massive corpora of data from the web can reproduce sensitive or private data raising both legal and ethical concerns.
Unlearning, or tuning models to forget information present in their training data, provides us with a way to protect private data after training.
We present TOFU, a benchmark aimed at helping deepen our understanding of unlearning.
arXiv Detail & Related papers (2024-01-11T18:57:12Z) - A Predictive Model using Machine Learning Algorithm in Identifying
Students Probability on Passing Semestral Course [0.0]
This study employs classification for data mining techniques, and decision tree for algorithm.
With the utilization of the newly discovered predictive model, the prediction of students probabilities to pass the current courses they take gives 0.7619 accuracy, 0.8333 precision, 0.8823 recall, and 0.8571 f1 score.
arXiv Detail & Related papers (2023-04-12T01:57:08Z) - Personalized Student Attribute Inference [0.0]
This work is to create a system able to automatically detect students in difficulty, for instance predicting if they are likely to fail a course.
We compare a naive approach widely used in the literature, which uses attributes available in the data set (like the grades) with a personalized approach we called Personalized Student Attribute Inference (IPSA)
arXiv Detail & Related papers (2022-12-26T23:00:28Z) - Responsible Active Learning via Human-in-the-loop Peer Study [88.01358655203441]
We propose a responsible active learning method, namely Peer Study Learning (PSL), to simultaneously preserve data privacy and improve model stability.
We first introduce a human-in-the-loop teacher-student architecture to isolate unlabelled data from the task learner (teacher) on the cloud-side.
During training, the task learner instructs the light-weight active learner which then provides feedback on the active sampling criterion.
arXiv Detail & Related papers (2022-11-24T13:18:27Z) - Evaluating Two Approaches to Assessing Student Progress in Cybersecurity
Exercises [0.7329200485567825]
Students need to develop practical skills such as using command-line tools.
Hands-on exercises are the most direct way to assess students' mastery.
We aim to alleviate this issue by modeling and visualizing student progress automatically throughout the exercise.
arXiv Detail & Related papers (2021-12-03T18:08:27Z) - What Matters in Learning from Offline Human Demonstrations for Robot
Manipulation [64.43440450794495]
We conduct an extensive study of six offline learning algorithms for robot manipulation.
Our study analyzes the most critical challenges when learning from offline human data.
We highlight opportunities for learning from human datasets.
arXiv Detail & Related papers (2021-08-06T20:48:30Z) - Graph-based Exercise- and Knowledge-Aware Learning Network for Student
Performance Prediction [8.21303828329009]
We propose a Graph-based Exercise- and Knowledge-Aware Learning Network for accurate student score prediction.
We learn students' mastery of exercises and knowledge concepts respectively to model the two-fold effects of exercises and knowledge concepts.
arXiv Detail & Related papers (2021-06-01T06:53:17Z) - Low-Regret Active learning [64.36270166907788]
We develop an online learning algorithm for identifying unlabeled data points that are most informative for training.
At the core of our work is an efficient algorithm for sleeping experts that is tailored to achieve low regret on predictable (easy) instances.
arXiv Detail & Related papers (2021-04-06T22:53:45Z) - Never Stop Learning: The Effectiveness of Fine-Tuning in Robotic
Reinforcement Learning [109.77163932886413]
We show how to adapt vision-based robotic manipulation policies to new variations by fine-tuning via off-policy reinforcement learning.
This adaptation uses less than 0.2% of the data necessary to learn the task from scratch.
We find that our approach of adapting pre-trained policies leads to substantial performance gains over the course of fine-tuning.
arXiv Detail & Related papers (2020-04-21T17:57:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.