論文の概要: Cross Domain Early Crop Mapping using CropSTGAN
- arxiv url: http://arxiv.org/abs/2401.07398v2
- Date: Thu, 18 Apr 2024 18:49:38 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-22 19:47:30.116190
- Title: Cross Domain Early Crop Mapping using CropSTGAN
- Title(参考訳): CropSTGANを用いたクロスドメイン初期作物マッピング
- Authors: Yiqun Wang, Hui Huang, Radu State,
- Abstract要約: 本稿では,Crop Mapping Spectral-temporal Generative Adrial Neural Network (CropSTGAN)を紹介する。
CropSTGANは、ターゲットドメインのスペクトル特徴をソースドメインのスペクトル特徴に変換することを学習し、実質的に大きな相似性をブリッジする。
実験では、CropSTGANは様々な最先端(SOTA)メソッドに対してベンチマークされる。
- 参考スコア(独自算出の注目度): 12.271756709807898
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Driven by abundant satellite imagery, machine learning-based approaches have recently been promoted to generate high-resolution crop cultivation maps to support many agricultural applications. One of the major challenges faced by these approaches is the limited availability of ground truth labels. In the absence of ground truth, existing work usually adopts the "direct transfer strategy" that trains a classifier using historical labels collected from other regions and then applies the trained model to the target region. Unfortunately, the spectral features of crops exhibit inter-region and inter-annual variability due to changes in soil composition, climate conditions, and crop progress, the resultant models perform poorly on new and unseen regions or years. Despite recent efforts, such as the application of the deep adaptation neural network (DANN) model structure in the deep adaptation crop classification network (DACCN), to tackle the above cross-domain challenges, their effectiveness diminishes significantly when there is a large dissimilarity between the source and target regions. This paper introduces the Crop Mapping Spectral-temporal Generative Adversarial Neural Network (CropSTGAN), a novel solution for cross-domain challenges, that doesn't require target domain labels. CropSTGAN learns to transform the target domain's spectral features to those of the source domain, effectively bridging large dissimilarities. Additionally, it employs an identity loss to maintain the intrinsic local structure of the data. Comprehensive experiments across various regions and years demonstrate the benefits and effectiveness of the proposed approach. In experiments, CropSTGAN is benchmarked against various state-of-the-art (SOTA) methods. Notably, CropSTGAN significantly outperforms these methods in scenarios with large data distribution dissimilarities between the target and source domains.
- Abstract(参考訳): 豊富な衛星画像によって駆動される機械学習のアプローチは、近年、多くの農業応用を支援するため、高解像度の作物栽培地図を作成するために推進されている。
これらのアプローチで直面する大きな課題の1つは、基底真理ラベルの可用性の制限である。
地上の真実がなければ、既存の作業では、他の地域から収集した履歴ラベルを使って分類器を訓練し、訓練されたモデルを対象地域に適用する「ダイレクトトランスファー戦略」が採用される。
残念なことに、土壌組成の変化、気候条件、作物の進行などにより、作物のスペクトル特性は地域間・年内変動を示しており、結果として得られたモデルは、新鮮・未確認の地域や年々、良くない。
深層適応型ニューラルネットワーク(DANN)モデル構造を深層適応型作物分類ネットワーク(DACCN)に適用して、上記のクロスドメイン課題に対処するなど、近年の取り組みにもかかわらず、ソースとターゲット領域の間に大きな相違がある場合、それらの効果は著しく低下する。
本稿では,クロスドメイン課題に対する新しいソリューションであるCropSTGAN(CropSTGAN)について紹介する。
CropSTGANは、ターゲットドメインのスペクトル特徴をソースドメインのスペクトル特徴に変換することを学習し、実質的に大きな相似性をブリッジする。
さらに、データ固有の局所構造を維持するためにアイデンティティ損失を用いる。
様々な地域や年々にわたる総合的な実験は、提案手法の利点と効果を実証している。
実験では、CropSTGANは様々な最先端(SOTA)メソッドに対してベンチマークされる。
特に、CropSTGANは、ターゲットドメインとソースドメインの間に大きなデータ分散の相違があるシナリオにおいて、これらのメソッドを著しく上回ります。
関連論文リスト
- Self-training through Classifier Disagreement for Cross-Domain Opinion
Target Extraction [62.41511766918932]
オピニオンターゲット抽出(OTE)またはアスペクト抽出(AE)は意見マイニングの基本的な課題である。
最近の研究は、現実世界のシナリオでよく見られるクロスドメインのOTEに焦点を当てている。
そこで本稿では,ドメイン固有の教師と学生のネットワークから出力されるモデルが未学習のターゲットデータと一致しない対象サンプルを選択するためのSSLアプローチを提案する。
論文 参考訳(メタデータ) (2023-02-28T16:31:17Z) - Cyclically Disentangled Feature Translation for Face Anti-spoofing [61.70377630461084]
循環不整合特徴変換ネットワーク(CDFTN)と呼ばれる新しい領域適応手法を提案する。
CDFTNは、(1)ソースドメイン不変の生長特徴と2)ドメイン固有のコンテンツ特徴とを持つ擬似ラベル付きサンプルを生成する。
ソースドメインラベルの監督の下で、合成擬似ラベル付き画像に基づいてロバスト分類器を訓練する。
論文 参考訳(メタデータ) (2022-12-07T14:12:34Z) - Deep face recognition with clustering based domain adaptation [57.29464116557734]
そこで本研究では,ターゲットドメインとソースがクラスを共有しない顔認識タスクを対象とした,クラスタリングに基づく新しいドメイン適応手法を提案する。
本手法は,特徴領域をグローバルに整列させ,その一方で,対象クラスタを局所的に識別することで,識別対象特徴を効果的に学習する。
論文 参考訳(メタデータ) (2022-05-27T12:29:11Z) - Domain Adaptive Semantic Segmentation with Regional Contrastive
Consistency Regularization [19.279884432843822]
本稿では,領域適応型セマンティックセマンティックセグメンテーションのための局所コントラスト整合正規化(RCCR)と呼ばれる,新しいエンドツーエンドのトレーニング可能なアプローチを提案する。
私たちの中核となる考え方は、異なる画像の同じ位置から抽出された類似の地域的特徴を取り除き、その一方、2つの画像の異なる位置から特徴を分離することです。
論文 参考訳(メタデータ) (2021-10-11T11:45:00Z) - Domain-Adversarial Training of Self-Attention Based Networks for Land
Cover Classification using Multi-temporal Sentinel-2 Satellite Imagery [0.0]
ほとんどの実用的なアプリケーションはラベル付きデータには依存せず、この分野では調査は時間のかかるソリューションである。
本稿では,異なる地理的領域間のドメイン不一致を橋渡しする深層ニューラルネットワークの対比訓練について検討する。
論文 参考訳(メタデータ) (2021-04-01T15:45:17Z) - Physically-Constrained Transfer Learning through Shared Abundance Space
for Hyperspectral Image Classification [14.840925517957258]
本稿では、ソースとターゲットドメイン間のギャップを埋める新しい転送学習手法を提案する。
提案手法は,共有空間を経由した物理制約付き移動学習と呼ばれる。
論文 参考訳(メタデータ) (2020-08-19T17:41:37Z) - Domain Conditioned Adaptation Network [90.63261870610211]
本稿では,ドメイン条件付きチャネルアテンション機構を用いて,異なる畳み込みチャネルを励起するドメイン条件適応ネットワーク(DCAN)を提案する。
これは、ディープDAネットワークのドメインワイドな畳み込みチャネルアクティベーションを探求する最初の試みである。
論文 参考訳(メタデータ) (2020-05-14T04:23:24Z) - Cross-domain Object Detection through Coarse-to-Fine Feature Adaptation [62.29076080124199]
本稿では,クロスドメインオブジェクト検出のための特徴適応手法を提案する。
粗粒度では、アテンション機構を採用して前景領域を抽出し、その辺縁分布に応じて整列する。
粒度の細かい段階では、同じカテゴリのグローバルプロトタイプと異なるドメインとの距離を最小化することにより、前景の条件分布アライメントを行う。
論文 参考訳(メタデータ) (2020-03-23T13:40:06Z) - Towards Fair Cross-Domain Adaptation via Generative Learning [50.76694500782927]
ドメイン適応(DA)は、よくラベル付けされたソースドメイン上でトレーニングされたモデルを、異なる分散に横たわる未ラベルのターゲットドメインに適応することを目的としています。
本研究では,新規な生成的Few-shot Cross-Domain Adaptation (GFCA) アルゴリズムを開発した。
論文 参考訳(メタデータ) (2020-03-04T23:25:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。