Utilizing deep learning models for the identification of enhancers and
super-enhancers based on genomic and epigenomic features
- URL: http://arxiv.org/abs/2401.07470v1
- Date: Mon, 15 Jan 2024 04:58:50 GMT
- Title: Utilizing deep learning models for the identification of enhancers and
super-enhancers based on genomic and epigenomic features
- Authors: Zahra Ahani, Moein Shahiki Tash, Yoel Ledo Mezquita and Jason Angel
- Abstract summary: This paper provides an extensive examination of a sizable dataset of English tweets focusing on nine widely recognized cryptocurrencies.
Our primary objective was to conduct a psycholinguistic and emotion analysis of social media content associated with these cryptocurrencies.
The study involved comparing linguistic characteristics across the diverse digital coins, shedding light on the distinctive linguistic patterns that emerge within each coin's community.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper provides an extensive examination of a sizable dataset of English
tweets focusing on nine widely recognized cryptocurrencies, specifically
Cardano, Binance, Bitcoin, Dogecoin, Ethereum, Fantom, Matic, Shiba, and
Ripple. Our primary objective was to conduct a psycholinguistic and emotion
analysis of social media content associated with these cryptocurrencies. To
enable investigators to make more informed decisions. The study involved
comparing linguistic characteristics across the diverse digital coins, shedding
light on the distinctive linguistic patterns that emerge within each coin's
community. To achieve this, we utilized advanced text analysis techniques.
Additionally, our work unveiled an intriguing Understanding of the interplay
between these digital assets within the cryptocurrency community. By examining
which coin pairs are mentioned together most frequently in the dataset, we
established correlations between different cryptocurrencies. To ensure the
reliability of our findings, we initially gathered a total of 832,559 tweets
from Twitter. These tweets underwent a rigorous preprocessing stage, resulting
in a refined dataset of 115,899 tweets that were used for our analysis.
Overall, our research offers valuable Perception into the linguistic nuances of
various digital coins' online communities and provides a deeper understanding
of their interactions in the cryptocurrency space.
Related papers
- Interplay between Cryptocurrency Transactions and Online Financial
Forums [41.94295877935867]
This study focuses on the study of the interplay between these cryptocurrency forums and fluctuations in cryptocurrency values.
It shows that the activity of Bitcointalk forum keeps a direct relationship with the trend in the values of BTC.
The experiment highlights that forum data can explain specific events in the financial field.
arXiv Detail & Related papers (2023-11-27T16:25:28Z) - AI-Assisted Investigation of On-Chain Parameters: Risky Cryptocurrencies
and Price Factors [0.9831489366502302]
This paper focuses on analyzing historical data and using artificial intelligence algorithms on on-chain parameters.
We conducted an analysis of historical cryptocurrencies' on-chain data and measured the correlation between the price and other parameters.
Our analysis revealed a significant negative correlation between cryptocurrency price and maximum and total supply, as well as a weak positive correlation between price and 24-hour trading volume.
arXiv Detail & Related papers (2023-08-11T09:20:28Z) - Causality between Sentiment and Cryptocurrency Prices [0.0]
This study investigates the relationship between narratives conveyed through microblogging platforms, namely Twitter, and the value of crypto assets.
We used an unsupervised machine learning algorithm to discover the latent topics within the massive and noisy textual data from Twitter.
In a number of situations, we noticed a strong link between our narratives and crypto prices.
arXiv Detail & Related papers (2023-06-09T10:40:22Z) - Social Media Sentiment Analysis for Cryptocurrency Market Prediction [0.0]
We study how the different sentiment metrics are correlated with the price movements of Bitcoin.
One of the models outperforms more than 20 other public ones.
arXiv Detail & Related papers (2022-04-19T03:27:29Z) - Ask "Who", Not "What": Bitcoin Volatility Forecasting with Twitter Data [2.9223917785251285]
We focus on volatility predictions for a relatively new asset class of cryptocurrencies (in particular, Bitcoin) using deep learning representations of public social media data from Twitter.
For the field work, we extracted semantic information and user interaction statistics from over 30 million Bitcoin-related tweets.
We built several deep learning architectures that utilized a combination of the gathered information.
arXiv Detail & Related papers (2021-10-27T09:55:03Z) - Cryptocurrencies Activity as a Complex Network: Analysis of Transactions
Graphs [7.58432869763351]
We analyze the flow of these digital transactions in a certain period of time by studying, through complex network theory, the patterns of interactions in four prominent and different Distributed Ledger Technologies (DLTs)
We show that studying the network characteristics and peculiarities is of paramount importance, in order to understand how users interact in the DLT.
arXiv Detail & Related papers (2021-09-14T08:32:36Z) - Smart Contract Vulnerability Detection: From Pure Neural Network to
Interpretable Graph Feature and Expert Pattern Fusion [48.744359070088166]
Conventional smart contract vulnerability detection methods heavily rely on fixed expert rules.
Recent deep learning approaches alleviate this issue but fail to encode useful expert knowledge.
We develop automatic tools to extract expert patterns from the source code.
We then cast the code into a semantic graph to extract deep graph features.
arXiv Detail & Related papers (2021-06-17T07:12:13Z) - The Doge of Wall Street: Analysis and Detection of Pump and Dump Cryptocurrency Manipulations [50.521292491613224]
This paper performs an in-depth analysis of two market manipulations organized by communities over the Internet: The pump and dump and the crowd pump.
The pump and dump scheme is a fraud as old as the stock market. Now, it got new vitality in the loosely regulated market of cryptocurrencies.
We report on three case studies related to pump and dump groups.
arXiv Detail & Related papers (2021-05-03T10:20:47Z) - Vyaktitv: A Multimodal Peer-to-Peer Hindi Conversations based Dataset
for Personality Assessment [50.15466026089435]
We present a novel peer-to-peer Hindi conversation dataset- Vyaktitv.
It consists of high-quality audio and video recordings of the participants, with Hinglish textual transcriptions for each conversation.
The dataset also contains a rich set of socio-demographic features, like income, cultural orientation, amongst several others, for all the participants.
arXiv Detail & Related papers (2020-08-31T17:44:28Z) - From Tether to Libra: Stablecoins, Digital Currency and the Future of
Money [62.997667081978825]
It provides a compact definition for stablecoins, identifying the unique features that make them distinct from previously known payment systems.
It surveys the different use cases for stablecoins as well as the underlying economic incentives for creating them.
arXiv Detail & Related papers (2020-05-26T18:13:46Z) - Pump and Dumps in the Bitcoin Era: Real Time Detection of Cryptocurrency Market Manipulations [50.521292491613224]
We perform an in-depth analysis of pump and dump schemes organized by communities over the Internet.
We observe how these communities are organized and how they carry out the fraud.
We introduce an approach to detect the fraud in real time that outperforms the current state of the art.
arXiv Detail & Related papers (2020-05-04T21:36:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.