Must: Maximizing Latent Capacity of Spatial Transcriptomics Data
- URL: http://arxiv.org/abs/2401.07543v1
- Date: Mon, 15 Jan 2024 09:07:28 GMT
- Title: Must: Maximizing Latent Capacity of Spatial Transcriptomics Data
- Authors: Zelin Zang, Liangyu Li, Yongjie Xu, Chenrui Duan, Kai Wang, Yang You,
Yi Sun, Stan Z. Li
- Abstract summary: This paper introduces Multiple-modality Structure Transformation, named MuST, a novel methodology to tackle the challenge.
It integrates the multi-modality information contained in the ST data effectively into a uniform latent space to provide a foundation for all the downstream tasks.
The results show that it outperforms existing state-of-the-art methods with clear advantages in the precision of identifying and preserving structures of tissues and biomarkers.
- Score: 41.70354088000952
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Spatial transcriptomics (ST) technologies have revolutionized the study of
gene expression patterns in tissues by providing multimodality data in
transcriptomic, spatial, and morphological, offering opportunities for
understanding tissue biology beyond transcriptomics. However, we identify the
modality bias phenomenon in ST data species, i.e., the inconsistent
contribution of different modalities to the labels leads to a tendency for the
analysis methods to retain the information of the dominant modality. How to
mitigate the adverse effects of modality bias to satisfy various downstream
tasks remains a fundamental challenge. This paper introduces Multiple-modality
Structure Transformation, named MuST, a novel methodology to tackle the
challenge. MuST integrates the multi-modality information contained in the ST
data effectively into a uniform latent space to provide a foundation for all
the downstream tasks. It learns intrinsic local structures by topology
discovery strategy and topology fusion loss function to solve the
inconsistencies among different modalities. Thus, these topology-based and deep
learning techniques provide a solid foundation for a variety of analytical
tasks while coordinating different modalities. The effectiveness of MuST is
assessed by performance metrics and biological significance. The results show
that it outperforms existing state-of-the-art methods with clear advantages in
the precision of identifying and preserving structures of tissues and
biomarkers. MuST offers a versatile toolkit for the intricate analysis of
complex biological systems.
Related papers
- MVKTrans: Multi-View Knowledge Transfer for Robust Multiomics Classification [14.533025681231294]
We propose the multi-view knowledge transfer learning framework, which transfers intra- and inter-omics knowledge in an adaptive manner.
Specifically, we design a graph contrastive module that is trained on unlabeled data to effectively learn and transfer the underlying intra-omics patterns to the supervised task.
In light of the varying discriminative capacities of modalities across different diseases and/or samples, we introduce an adaptive and bi-directional cross-omics distillation module.
arXiv Detail & Related papers (2024-11-13T15:45:46Z) - Causal Representation Learning from Multimodal Biological Observations [57.00712157758845]
We aim to develop flexible identification conditions for multimodal data.
We establish identifiability guarantees for each latent component, extending the subspace identification results from prior work.
Our key theoretical ingredient is the structural sparsity of the causal connections among distinct modalities.
arXiv Detail & Related papers (2024-11-10T16:40:27Z) - Multi-modal Spatial Clustering for Spatial Transcriptomics Utilizing High-resolution Histology Images [1.3124513975412255]
spatial transcriptomics (ST) enables transcriptome-wide gene expression profiling while preserving spatial context.
Current spatial clustering methods fail to fully integrate high-resolution histology image features with gene expression data.
We propose a novel contrastive learning-based deep learning approach that integrates gene expression data with histology image features.
arXiv Detail & Related papers (2024-10-31T00:32:24Z) - PRAGA: Prototype-aware Graph Adaptive Aggregation for Spatial Multi-modal Omics Analysis [1.1619559582563954]
We propose a novel spatial multi-modal omics resolved framework, termed PRototype-Aware Graph Adaptative Aggregation for Spatial Multi-modal Omics Analysis (PRAGA)
PRAGA constructs a dynamic graph to capture latent semantic relations and comprehensively integrate spatial information and feature semantics.
The learnable graph structure can also denoise perturbations by learning cross-modal knowledge.
arXiv Detail & Related papers (2024-09-19T12:53:29Z) - Revisiting Adaptive Cellular Recognition Under Domain Shifts: A Contextual Correspondence View [49.03501451546763]
We identify the importance of implicit correspondences across biological contexts for exploiting domain-invariant pathological composition.
We propose self-adaptive dynamic distillation to secure instance-aware trade-offs across different model constituents.
arXiv Detail & Related papers (2024-07-14T04:41:16Z) - GTP-4o: Modality-prompted Heterogeneous Graph Learning for Omni-modal Biomedical Representation [68.63955715643974]
Modality-prompted Heterogeneous Graph for Omnimodal Learning (GTP-4o)
We propose an innovative Modality-prompted Heterogeneous Graph for Omnimodal Learning (GTP-4o)
arXiv Detail & Related papers (2024-07-08T01:06:13Z) - Multimodal Cross-Task Interaction for Survival Analysis in Whole Slide Pathological Images [10.996711454572331]
Survival prediction, utilizing pathological images and genomic profiles, is increasingly important in cancer analysis and prognosis.
Existing multimodal methods often rely on alignment strategies to integrate complementary information.
We propose a Multimodal Cross-Task Interaction (MCTI) framework to explore the intrinsic correlations between subtype classification and survival analysis tasks.
arXiv Detail & Related papers (2024-06-25T02:18:35Z) - Seeing Unseen: Discover Novel Biomedical Concepts via
Geometry-Constrained Probabilistic Modeling [53.7117640028211]
We present a geometry-constrained probabilistic modeling treatment to resolve the identified issues.
We incorporate a suite of critical geometric properties to impose proper constraints on the layout of constructed embedding space.
A spectral graph-theoretic method is devised to estimate the number of potential novel classes.
arXiv Detail & Related papers (2024-03-02T00:56:05Z) - Progress and Opportunities of Foundation Models in Bioinformatics [77.74411726471439]
Foundations models (FMs) have ushered in a new era in computational biology, especially in the realm of deep learning.
Central to our focus is the application of FMs to specific biological problems, aiming to guide the research community in choosing appropriate FMs for their research needs.
Review analyses challenges and limitations faced by FMs in biology, such as data noise, model explainability, and potential biases.
arXiv Detail & Related papers (2024-02-06T02:29:17Z) - Multimodal Optimal Transport-based Co-Attention Transformer with Global
Structure Consistency for Survival Prediction [5.445390550440809]
Survival prediction is a complicated ordinal regression task that aims to predict the ranking risk of death.
Due to the large size of pathological images, it is difficult to effectively represent the gigapixel whole slide images (WSIs)
Interactions within tumor microenvironment (TME) in histology are essential for survival analysis.
arXiv Detail & Related papers (2023-06-14T08:01:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.