Combining Machine Learning and Ontology: A Systematic Literature Review
- URL: http://arxiv.org/abs/2401.07744v2
- Date: Mon, 19 Feb 2024 10:43:51 GMT
- Title: Combining Machine Learning and Ontology: A Systematic Literature Review
- Authors: Sarah Ghidalia, Ouassila Labbani Narsis, Aur\'elie Bertaux, Christophe
Nicolle
- Abstract summary: We conducted a review of articles that investigate the integration of machine learning and systematic reasoning.
The objective was to identify techniques that incorporate inductive reasoning (performed by us) into artificial intelligence systems.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Motivated by the desire to explore the process of combining inductive and
deductive reasoning, we conducted a systematic literature review of articles
that investigate the integration of machine learning and ontologies. The
objective was to identify diverse techniques that incorporate both inductive
reasoning (performed by machine learning) and deductive reasoning (performed by
ontologies) into artificial intelligence systems. Our review, which included
the analysis of 128 studies, allowed us to identify three main categories of
hybridization between machine learning and ontologies: learning-enhanced
ontologies, semantic data mining, and learning and reasoning systems. We
provide a comprehensive examination of all these categories, emphasizing the
various machine learning algorithms utilized in the studies. Furthermore, we
compared our classification with similar recent work in the field of hybrid AI
and neuro-symbolic approaches.
Related papers
- Argumentation and Machine Learning [4.064849471241967]
This chapter provides an overview of research works that present approaches with some degree of cross-fertilisation between Computational Argumentation and Machine Learning.
Two broad themes representing the purpose of the interaction between these two areas were identified.
We evaluate the spectrum of works across various dimensions, including the type of learning and the form of argumentation framework used.
arXiv Detail & Related papers (2024-10-31T08:19:58Z) - Ontology Embedding: A Survey of Methods, Applications and Resources [54.3453925775069]
Ontologies are widely used for representing domain knowledge and meta data.
One straightforward solution is to integrate statistical analysis and machine learning.
Numerous papers have been published on embedding, but a lack of systematic reviews hinders researchers from gaining a comprehensive understanding of this field.
arXiv Detail & Related papers (2024-06-16T14:49:19Z) - Brain-Inspired Machine Intelligence: A Survey of
Neurobiologically-Plausible Credit Assignment [65.268245109828]
We examine algorithms for conducting credit assignment in artificial neural networks that are inspired or motivated by neurobiology.
We organize the ever-growing set of brain-inspired learning schemes into six general families and consider these in the context of backpropagation of errors.
The results of this review are meant to encourage future developments in neuro-mimetic systems and their constituent learning processes.
arXiv Detail & Related papers (2023-12-01T05:20:57Z) - Foundations and Recent Trends in Multimodal Machine Learning:
Principles, Challenges, and Open Questions [68.6358773622615]
This paper provides an overview of the computational and theoretical foundations of multimodal machine learning.
We propose a taxonomy of 6 core technical challenges: representation, alignment, reasoning, generation, transference, and quantification.
Recent technical achievements will be presented through the lens of this taxonomy, allowing researchers to understand the similarities and differences across new approaches.
arXiv Detail & Related papers (2022-09-07T19:21:19Z) - Human-Robot Collaboration and Machine Learning: A Systematic Review of
Recent Research [69.48907856390834]
Human-robot collaboration (HRC) is the approach that explores the interaction between a human and a robot.
This paper proposes a thorough literature review of the use of machine learning techniques in the context of HRC.
arXiv Detail & Related papers (2021-10-14T15:14:33Z) - On the Complexity of Learning Description Logic Ontologies [14.650545418986058]
Ontologies are a popular way of representing domain knowledge, in particular, knowledge in domains related to life sciences.
We provide a formal specification of the exact and the probably correct learning models from learning theory.
arXiv Detail & Related papers (2021-03-25T09:18:12Z) - Measuring and modeling the motor system with machine learning [117.44028458220427]
The utility of machine learning in understanding the motor system is promising a revolution in how to collect, measure, and analyze data.
We discuss the growing use of machine learning: from pose estimation, kinematic analyses, dimensionality reduction, and closed-loop feedback, to its use in understanding neural correlates and untangling sensorimotor systems.
arXiv Detail & Related papers (2021-03-22T12:42:16Z) - Counterfactual Explanations for Machine Learning: A Review [5.908471365011942]
We review and categorize research on counterfactual explanations in machine learning.
Modern approaches to counterfactual explainability in machine learning draw connections to the established legal doctrine in many countries.
arXiv Detail & Related papers (2020-10-20T20:08:42Z) - Neuro-symbolic Architectures for Context Understanding [59.899606495602406]
We propose the use of hybrid AI methodology as a framework for combining the strengths of data-driven and knowledge-driven approaches.
Specifically, we inherit the concept of neuro-symbolism as a way of using knowledge-bases to guide the learning progress of deep neural networks.
arXiv Detail & Related papers (2020-03-09T15:04:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.