論文の概要: Exploring Masked Autoencoders for Sensor-Agnostic Image Retrieval in Remote Sensing
- arxiv url: http://arxiv.org/abs/2401.07782v3
- Date: Wed, 11 Dec 2024 14:46:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-12 13:58:44.317597
- Title: Exploring Masked Autoencoders for Sensor-Agnostic Image Retrieval in Remote Sensing
- Title(参考訳): リモートセンシングにおけるセンサ非依存画像検索のためのマスクオートエンコーダの探索
- Authors: Jakob Hackstein, Gencer Sumbul, Kai Norman Clasen, Begüm Demir,
- Abstract要約: 近年,マスク付きオートエンコーダ(MAE)による自己教師型学習が,リモートセンシング(RS)画像表現学習において注目されている。
本稿では,センサに依存しないコンテンツベース画像検索(CBIR)におけるMAEsの有効性について検討する。
マルチセンサRS画像アーカイブにおけるマスク画像モデリングの活用を目的とした,バニラMAEの適応可能性に関する体系的概要を述べる。
- 参考スコア(独自算出の注目度): 2.4949076090402724
- License:
- Abstract: Self-supervised learning through masked autoencoders (MAEs) has recently attracted great attention for remote sensing (RS) image representation learning, and thus embodies a significant potential for content-based image retrieval (CBIR) from ever-growing RS image archives. However, the existing MAE based CBIR studies in RS assume that the considered RS images are acquired by a single image sensor, and thus are only suitable for uni-modal CBIR problems. The effectiveness of MAEs for cross-sensor CBIR, which aims to search semantically similar images across different image modalities, has not been explored yet. In this paper, we take the first step to explore the effectiveness of MAEs for sensor-agnostic CBIR in RS. To this end, we present a systematic overview on the possible adaptations of the vanilla MAE to exploit masked image modeling on multi-sensor RS image archives (denoted as cross-sensor masked autoencoders [CSMAEs]) in the context of CBIR. Based on different adjustments applied to the vanilla MAE, we introduce different CSMAE models. We also provide an extensive experimental analysis of these CSMAE models. We finally derive a guideline to exploit masked image modeling for uni-modal and cross-modal CBIR problems in RS. The code of this work is publicly available at https://github.com/jakhac/CSMAE.
- Abstract(参考訳): マスク付きオートエンコーダ(MAE)による自己教師型学習は,近年,リモートセンシング(RS)画像表現学習に大きな注目を集めている。
しかし、RSにおける既存のMAEベースのCBIR研究では、検討されたRS画像は単一のイメージセンサによって取得され、従って一様CBIR問題にのみ適していると仮定している。
画像モダリティの異なる意味的に類似した画像を探索することを目的としたクロスセンサーCBIRに対するMAEsの有効性は、まだ検討されていない。
本稿では,センサ非依存型CBIRにおけるMAEsの有効性について検討する。
この目的のために、CBIRの文脈における多センサRS画像アーカイブ(CSMAE)のマスク画像モデリングを利用するためのバニラMAEの適応可能性について、系統的な概要を述べる。
バニラMAEに適用される様々な調整に基づいて、異なるCSMAEモデルを導入する。
また、これらのCSMAEモデルについて広範な実験分析を行った。
RSにおけるユニモーダル・クロスモーダルCBIR問題に対してマスク付き画像モデリングを利用するためのガイドラインを導出する。
この作業のコードはhttps://github.com/jakhac/CSMAEで公開されている。
関連論文リスト
- Large Language Models for Multimodal Deformable Image Registration [50.91473745610945]
そこで本研究では,様々な医用画像からの深い特徴の整合を図るために,新しい粗いMDIRフレームワークLLM-Morphを提案する。
具体的には、まずCNNエンコーダを用いて、クロスモーダル画像ペアから深い視覚的特徴を抽出し、次に、最初のアダプタを使ってこれらのトークンを調整する。
第3に、トークンのアライメントのために、他の4つのアダプタを使用して、LLM符号化トークンをマルチスケールの視覚特徴に変換し、マルチスケールの変形場を生成し、粗いMDIRタスクを容易にする。
論文 参考訳(メタデータ) (2024-08-20T09:58:30Z) - OpticalRS-4M: Scaling Efficient Masked Autoencoder Learning on Large Remote Sensing Dataset [66.15872913664407]
本稿では、大規模RSデータセットの作成とMIMの効率的なアプローチを特徴とする、RSモデルのための新しい事前学習パイプラインを提案する。
我々は、公開可能なRSデータセットを収集し、排除、スライシング、復号化によってそれらを処理することで、OptoRS-4Mという高品質なデータセットをキュレートした。
実験により,OCR-4Mは分類,検出,セグメンテーション性能を著しく向上し,SelectiveMAEは2回以上のトレーニング効率を向上させることが示された。
論文 参考訳(メタデータ) (2024-06-17T15:41:57Z) - RS3Mamba: Visual State Space Model for Remote Sensing Images Semantic Segmentation [7.922421805234563]
本稿では,この革新的な技術をリモートセンシングタスクに組み込むために,リモートセンシング画像セマンティックセマンティックセマンティフィケーションMamba (RS3Mamba) という新しいデュアルブランチネットワークを提案する。
RS3MambaはVSSブロックを使用して補助ブランチを構築し、畳み込みベースのメインブランチに追加のグローバル情報を提供する。
ISPRS VaihingenとLoveDA Urbanという2つの広く使われているデータセットの実験結果により、提案されたRS3Mambaの有効性と可能性を実証した。
論文 参考訳(メタデータ) (2024-04-03T04:59:28Z) - Feature Guided Masked Autoencoder for Self-supervised Learning in Remote
Sensing [16.683132793313693]
Masked AutoEncoder (MAE) はリモートセンシングにおける視覚トランスフォーマーの事前訓練に広く注目を集めている。
本研究では,多スペクトル画像に対する向き付けされた粒度(HOG)と正規化差分指標(NDI)の組合せを再構成し,SAR画像のHOGを再構成する特徴誘導マスク付きオートエンコーダ(FG-MAE)を提案する。
論文 参考訳(メタデータ) (2023-10-28T09:43:13Z) - Adapting Segment Anything Model for Change Detection in HR Remote
Sensing Images [18.371087310792287]
本研究は、高解像度リモートセンシング画像(RSI)の変化検出を改善するために、ビジョンファウンデーションモデル(VFM)の強力な視覚認識機能を活用することを目的とする。
我々は、能率的なSAMの変種であるFastSAMの視覚エンコーダを用いて、RSシーンの視覚表現を抽出する。
SAMの特徴に固有の意味表現を活用するために、両時間RSIにおける意味潜在をモデル化するためのタスク非依存の意味学習ブランチを導入する。
その結果, SAMCDはSOTA法よりも精度が高く, セミに匹敵するサンプル効率の学習能力を示す。
論文 参考訳(メタデータ) (2023-09-04T08:23:31Z) - R-MAE: Regions Meet Masked Autoencoders [113.73147144125385]
我々は、自己教師付き画像表現学習のための単語の潜在的な視覚的類似として領域を探索する。
生成前トレーニングベースラインであるMasked Autoencoding (MAE) に触発されて, 画素群や領域群から学習するためのマスク付き領域オートエンコーディングを提案する。
論文 参考訳(メタデータ) (2023-06-08T17:56:46Z) - Attentive Symmetric Autoencoder for Brain MRI Segmentation [56.02577247523737]
視覚変換器(ViT)をベースとした3次元脳MRIセグメンテーションタスクのための新しいアテンテーティブシンメトリオートエンコーダを提案する。
事前学習の段階では、提案するオートエンコーダがより注意を払って、勾配測定値に従って情報パッチを再構築する。
実験の結果,提案手法は最先端の自己教師付き学習法や医用画像分割モデルよりも優れていた。
論文 参考訳(メタデータ) (2022-09-19T09:43:19Z) - Exploring a Fine-Grained Multiscale Method for Cross-Modal Remote
Sensing Image Retrieval [21.05804942940532]
クロスモーダルなテキスト画像検索は、フレキシブルな入力と効率的なクエリの利点により、広く注目を集めている。
RSマルチモーダル検索タスクにおけるマルチスケール不足とターゲット冗長性の問題に対処するため、新しい非対称マルチモーダル特徴マッチングネットワーク(AMFMN)を考案した。
本モデルは,マルチスケールな特徴入力に適応し,マルチソース検索手法を好んで,冗長な特徴を動的にフィルタすることができる。
論文 参考訳(メタデータ) (2022-04-21T03:53:19Z) - An Empirical Study of Remote Sensing Pretraining [117.90699699469639]
本研究では,空中画像におけるリモートセンシング事前訓練(RSP)の実証的研究を行った。
RSPは、シーン認識タスクで特有のパフォーマンスを提供するのに役立つ。
RSPは、従来のイメージネットがRS画像に事前学習する際のデータ格差を緩和するが、それでもタスクの相違に悩まされる可能性がある。
論文 参考訳(メタデータ) (2022-04-06T13:38:11Z) - Multi-Content Complementation Network for Salient Object Detection in
Optical Remote Sensing Images [108.79667788962425]
光リモートセンシング画像(RSI-SOD)における有能な物体検出は、いまだに課題である。
本稿では, RSI-SOD における複数コンテンツの相補性を検討するために, MCCNet (Multi-Content Complementation Network) を提案する。
MCCMでは、前景機能、エッジ機能、背景機能、グローバル画像レベル機能など、RSI-SODにとって重要な複数の機能について検討する。
論文 参考訳(メタデータ) (2021-12-02T04:46:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。