論文の概要: VeCAF: Vision-language Collaborative Active Finetuning with Training Objective Awareness
- arxiv url: http://arxiv.org/abs/2401.07853v2
- Date: Sat, 13 Apr 2024 10:56:49 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-16 22:38:10.098111
- Title: VeCAF: Vision-language Collaborative Active Finetuning with Training Objective Awareness
- Title(参考訳): VeCAF:学習目的認識を用いた視覚言語協調型アクティブファインタニング
- Authors: Rongyu Zhang, Zefan Cai, Huanrui Yang, Zidong Liu, Denis Gudovskiy, Tomoyuki Okuno, Yohei Nakata, Kurt Keutzer, Baobao Chang, Yuan Du, Li Du, Shanghang Zhang,
- Abstract要約: VeCAFはラベルと自然言語アノテーションを使用して、PVMの微調整のためのパラメトリックデータ選択を行う。
VeCAFは微調整の目的を取り入れて重要なデータポイントを選択し、PVMをより高速な収束に向けて効果的に導く。
ImageNetでは、VeCAFは最大3.3倍のトレーニングバッチを使用して、完全な微調整に比べて目標のパフォーマンスに到達する。
- 参考スコア(独自算出の注目度): 56.87603097348203
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Finetuning a pretrained vision model (PVM) is a common technique for learning downstream vision tasks. However, the conventional finetuning process with randomly sampled data points results in diminished training efficiency. To address this drawback, we propose a novel approach, Vision-language Collaborative Active Finetuning (VeCAF). With the emerging availability of labels and natural language annotations of images through web-scale crawling or controlled generation, VeCAF makes use of these information to perform parametric data selection for PVM finetuning. VeCAF incorporates the finetuning objective to select significant data points that effectively guide the PVM towards faster convergence to meet the performance goal. This process is assisted by the inherent semantic richness of the text embedding space which we use to augment image features. Furthermore, the flexibility of text-domain augmentation allows VeCAF to handle out-of-distribution scenarios without external data. Extensive experiments show the leading performance and high computational efficiency of VeCAF that is superior to baselines in both in-distribution and out-of-distribution image classification tasks. On ImageNet, VeCAF uses up to 3.3x less training batches to reach the target performance compared to full finetuning, and achieves an accuracy improvement of 2.7% over the state-of-the-art active finetuning method with the same number of batches.
- Abstract(参考訳): PVM(Pretrained Vision Model)は、下流の視覚タスクを学習するための一般的なテクニックである。
しかし、ランダムなサンプルデータポイントを用いた従来の微調整プロセスでは、トレーニング効率が低下する。
この欠点に対処するために、視覚言語協調アクティブファインタニング(VeCAF)という新しいアプローチを提案する。
Webスケールのクローリングや制御された生成を通じて、ラベルや画像の自然言語アノテーションが登場し、VeCAFはこれらの情報を使用してPVMの微調整のためのパラメトリックデータ選択を行う。
VeCAFは、パフォーマンス目標を達成するために、PVMをより高速な収束に向けて効果的に導く重要なデータポイントを選択するために、微調整の目的を取り入れている。
このプロセスは、画像特徴の増大に使用するテキスト埋め込み空間の固有の意味的豊かさによって支援される。
さらに、テキストドメイン拡張の柔軟性により、VeCAFは外部データなしで配布外シナリオを処理できる。
広汎な実験は、分布内および分布外の両方のイメージ分類タスクにおいて、ベースラインよりも優れたVeCAFの先行性能と高い計算効率を示す。
ImageNetでは、VeCAFはフル微調整に比べて最大3.3倍のトレーニングバッチを使用し、同じバッチ数で最先端のアクティブ微調整法よりも2.7%の精度向上を実現している。
関連論文リスト
- CVPT: Cross-Attention help Visual Prompt Tuning adapt visual task [15.642102189777072]
Cross Visual Prompt Tuningは、新しいタイプのビジュアル微調整である。
CVPTは、プロンプトトークンと埋め込みトークンの相互アテンションを計算し、それら間のセマンティックな関係を計算する。
CVPTは、視覚タスクにおけるVPTの性能と効率を大幅に改善する。
論文 参考訳(メタデータ) (2024-08-27T11:07:19Z) - Zero-Shot Embeddings Inform Learning and Forgetting with Vision-Language Encoders [6.7181844004432385]
IMM(Inter-Intra Modal Measure)は、微調整によるパフォーマンス変化の強力な予測器として機能する。
IIMMスコアの高いタスクの微調整はドメイン内のパフォーマンス向上をもたらすが、ドメイン外のパフォーマンス低下も引き起こす。
ターゲットデータの1つのフォワードパスだけで、実践者は、この重要な洞察を利用して、モデルが微調整後の改善を期待できる程度を評価することができる。
論文 参考訳(メタデータ) (2024-07-22T15:35:09Z) - IFTR: An Instance-Level Fusion Transformer for Visual Collaborative Perception [9.117534139771738]
自律運転の分野で広く認知されている技術として、マルチエージェント協調認識が出現している。
現在のコラボレーティブな認識は、主にLiDAR点雲に依存しており、カメラ画像を用いた手法にはあまり注目されていない。
本研究は,視覚的協調知覚のためのインスタンスレベルの融合変換器を提案する。
論文 参考訳(メタデータ) (2024-07-13T11:38:15Z) - Harnessing Diffusion Models for Visual Perception with Meta Prompts [68.78938846041767]
本稿では,視覚知覚タスクの拡散モデルを用いた簡易かつ効果的な手法を提案する。
学習可能な埋め込み(メタプロンプト)を事前学習した拡散モデルに導入し、知覚の適切な特徴を抽出する。
提案手法は,NYU 深度 V2 と KITTI の深度推定タスク,および CityScapes のセマンティックセグメンテーションタスクにおいて,新しい性能記録を実現する。
論文 参考訳(メタデータ) (2023-12-22T14:40:55Z) - Approximated Prompt Tuning for Vision-Language Pre-trained Models [54.326232586461614]
視覚言語による事前学習モデルでは、事前学習タスクと下流タスクのギャップを埋めるために、しばしば多くの学習可能なトークンを必要とする。
本稿では,効率的なVL転送学習を実現するために,APT(Approximated Prompt Tuning)アプローチを提案する。
論文 参考訳(メタデータ) (2023-06-27T05:43:47Z) - Active Finetuning: Exploiting Annotation Budget in the
Pretraining-Finetuning Paradigm [132.9949120482274]
本稿では,事前学習ファインタニングパラダイムにおけるアノテーションのためのサンプルの選択に焦点を当てる。
本研究では,アクティブな微調整タスクのためのActiveFTと呼ばれる新しい手法を提案する。
画像分類とセマンティックセグメンテーションの両方に基づくベースラインよりも優れたActiveFTの先行性能と高効率性を示す。
論文 参考訳(メタデータ) (2023-03-25T07:17:03Z) - Cluster-level pseudo-labelling for source-free cross-domain facial
expression recognition [94.56304526014875]
表情認識のためのSFUDA法を提案する。
本手法は,自己教師付き事前学習を利用して,対象データから優れた特徴表現を学習する。
提案手法の有効性を4つの適応方式で検証し,FERに適用した場合,既存のSFUDA法より一貫して優れていることを示す。
論文 参考訳(メタデータ) (2022-10-11T08:24:50Z) - Feature Fusion Vision Transformer for Fine-Grained Visual Categorization [22.91753200323264]
我々は、新しい純粋なトランスベースフレームワークFeature Fusion Vision Transformer (FFVT)を提案する。
各トランス層から重要なトークンを集約し、ローカル、低レベル、中レベルの情報を補う。
我々は,相互注意重み付け (MAWS) と呼ばれる新しいトークン選択モジュールを設計し,ネットワークを効果的かつ効率的に識別トークンの選択に向けて誘導する。
論文 参考訳(メタデータ) (2021-07-06T01:48:43Z) - Adversarial Feature Augmentation and Normalization for Visual
Recognition [109.6834687220478]
最近のコンピュータビジョンの進歩は、分類モデルの一般化能力を改善するために、逆データ拡張を利用する。
本稿では,中間的特徴埋め込みにおける敵対的拡張を提唱する効率的かつ効率的な代替手法を提案する。
代表的なバックボーンネットワークを用いて,多様な視覚認識タスクにまたがる提案手法を検証する。
論文 参考訳(メタデータ) (2021-03-22T20:36:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。