Authorship Obfuscation in Multilingual Machine-Generated Text Detection
- URL: http://arxiv.org/abs/2401.07867v3
- Date: Fri, 04 Oct 2024 07:45:22 GMT
- Title: Authorship Obfuscation in Multilingual Machine-Generated Text Detection
- Authors: Dominik Macko, Robert Moro, Adaku Uchendu, Ivan Srba, Jason Samuel Lucas, Michiharu Yamashita, Nafis Irtiza Tripto, Dongwon Lee, Jakub Simko, Maria Bielikova,
- Abstract summary: Authorship obfuscation (AO) methods can cause machine-generated text (MGT) detection to evade detection.
We benchmark 10 well-known AO methods against 37 MGT detection methods against MGTs in 11 languages.
The results indicate that all tested AO methods can cause evasion of automated detection in all tested languages, where homoglyph attacks are especially successful.
- Score: 5.658790347990285
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: High-quality text generation capability of recent Large Language Models (LLMs) causes concerns about their misuse (e.g., in massive generation/spread of disinformation). Machine-generated text (MGT) detection is important to cope with such threats. However, it is susceptible to authorship obfuscation (AO) methods, such as paraphrasing, which can cause MGTs to evade detection. So far, this was evaluated only in monolingual settings. Thus, the susceptibility of recently proposed multilingual detectors is still unknown. We fill this gap by comprehensively benchmarking the performance of 10 well-known AO methods, attacking 37 MGT detection methods against MGTs in 11 languages (i.e., 10 $\times$ 37 $\times$ 11 = 4,070 combinations). We also evaluate the effect of data augmentation on adversarial robustness using obfuscated texts. The results indicate that all tested AO methods can cause evasion of automated detection in all tested languages, where homoglyph attacks are especially successful. However, some of the AO methods severely damaged the text, making it no longer readable or easily recognizable by humans (e.g., changed language, weird characters).
Related papers
- TempTest: Local Normalization Distortion and the Detection of Machine-generated Text [0.0]
We introduce a method for detecting machine-generated text that is entirely of the generating language model.
This is achieved by targeting a defect in the way that decoding strategies, such as temperature or top-k sampling, normalize conditional probability measures.
We evaluate our detector in the white and black box settings across various language models, datasets, and passage lengths.
arXiv Detail & Related papers (2025-03-26T10:56:59Z) - TH-Bench: Evaluating Evading Attacks via Humanizing AI Text on Machine-Generated Text Detectors [15.533392810111298]
We introduce TH-Bench, the first comprehensive benchmark to evaluate evading attacks against MGT detectors.
TH-Bench evaluates attacks across three key dimensions: evading effectiveness, text quality, and computational overhead.
Our findings reveal that no single evading attack excels across all three dimensions.
arXiv Detail & Related papers (2025-03-10T02:55:05Z) - ExaGPT: Example-Based Machine-Generated Text Detection for Human Interpretability [62.285407189502216]
Detecting texts generated by Large Language Models (LLMs) could cause grave mistakes due to incorrect decisions.
We introduce ExaGPT, an interpretable detection approach grounded in the human decision-making process.
We show that ExaGPT massively outperforms prior powerful detectors by up to +40.9 points of accuracy at a false positive rate of 1%.
arXiv Detail & Related papers (2025-02-17T01:15:07Z) - Evading AI-Generated Content Detectors using Homoglyphs [0.0]
Homoglyph-based attacks can effectively circumvent state-of-the-art AI-generated text detectors.
Our findings demonstrate that homoglyph-based attacks can effectively circumvent state-of-the-art detectors.
arXiv Detail & Related papers (2024-06-17T06:07:32Z) - M4GT-Bench: Evaluation Benchmark for Black-Box Machine-Generated Text Detection [69.41274756177336]
Large Language Models (LLMs) have brought an unprecedented surge in machine-generated text (MGT) across diverse channels.
This raises legitimate concerns about its potential misuse and societal implications.
We introduce a new benchmark based on a multilingual, multi-domain, and multi-generator corpus of MGTs -- M4GT-Bench.
arXiv Detail & Related papers (2024-02-17T02:50:33Z) - OUTFOX: LLM-Generated Essay Detection Through In-Context Learning with
Adversarially Generated Examples [44.118047780553006]
OUTFOX is a framework that improves the robustness of LLM-generated-text detectors by allowing both the detector and the attacker to consider each other's output.
Experiments show that the proposed detector improves the detection performance on the attacker-generated texts by up to +41.3 points F1-score.
The detector shows a state-of-the-art detection performance: up to 96.9 points F1-score, beating existing detectors on non-attacked texts.
arXiv Detail & Related papers (2023-07-21T17:40:47Z) - Multiscale Positive-Unlabeled Detection of AI-Generated Texts [27.956604193427772]
Multiscale Positive-Unlabeled (MPU) training framework is proposed to address the difficulty of short-text detection.
MPU method augments detection performance on long AI-generated texts, and significantly improves short-text detection of language model detectors.
arXiv Detail & Related papers (2023-05-29T15:25:00Z) - M4: Multi-generator, Multi-domain, and Multi-lingual Black-Box
Machine-Generated Text Detection [69.29017069438228]
Large language models (LLMs) have demonstrated remarkable capability to generate fluent responses to a wide variety of user queries.
This has also raised concerns about the potential misuse of such texts in journalism, education, and academia.
In this study, we strive to create automated systems that can detect machine-generated texts and pinpoint potential misuse.
arXiv Detail & Related papers (2023-05-24T08:55:11Z) - Smaller Language Models are Better Black-box Machine-Generated Text
Detectors [56.36291277897995]
Small and partially-trained models are better universal text detectors.
We find that whether the detector and generator were trained on the same data is not critically important to the detection success.
For instance, the OPT-125M model has an AUC of 0.81 in detecting ChatGPT generations, whereas a larger model from the GPT family, GPTJ-6B, has AUC of 0.45.
arXiv Detail & Related papers (2023-05-17T00:09:08Z) - MGTBench: Benchmarking Machine-Generated Text Detection [54.81446366272403]
This paper proposes the first benchmark framework for MGT detection against powerful large language models (LLMs)
We show that a larger number of words in general leads to better performance and most detection methods can achieve similar performance with much fewer training samples.
Our findings indicate that the model-based detection methods still perform well in the text attribution task.
arXiv Detail & Related papers (2023-03-26T21:12:36Z) - Paraphrasing evades detectors of AI-generated text, but retrieval is an
effective defense [56.077252790310176]
We present a paraphrase generation model (DIPPER) that can paraphrase paragraphs, condition on surrounding context, and control lexical diversity and content reordering.
Using DIPPER to paraphrase text generated by three large language models (including GPT3.5-davinci-003) successfully evades several detectors, including watermarking.
We introduce a simple defense that relies on retrieving semantically-similar generations and must be maintained by a language model API provider.
arXiv Detail & Related papers (2023-03-23T16:29:27Z) - Can AI-Generated Text be Reliably Detected? [54.670136179857344]
Unregulated use of LLMs can potentially lead to malicious consequences such as plagiarism, generating fake news, spamming, etc.
Recent works attempt to tackle this problem either using certain model signatures present in the generated text outputs or by applying watermarking techniques.
In this paper, we show that these detectors are not reliable in practical scenarios.
arXiv Detail & Related papers (2023-03-17T17:53:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.