Hardware Acceleration for Real-Time Wildfire Detection Onboard Drone
Networks
- URL: http://arxiv.org/abs/2401.08105v1
- Date: Tue, 16 Jan 2024 04:16:46 GMT
- Title: Hardware Acceleration for Real-Time Wildfire Detection Onboard Drone
Networks
- Authors: Austin Briley, Fatemeh Afghah
- Abstract summary: wildfire detection in remote and forest areas is crucial for minimizing devastation and preserving ecosystems.
Drones offer agile access to remote, challenging terrains, equipped with advanced imaging technology.
limited computation and battery resources pose challenges in implementing and efficient image classification models.
This paper aims to develop a real-time image classification and fire segmentation model.
- Score: 6.313148708539912
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Early wildfire detection in remote and forest areas is crucial for minimizing
devastation and preserving ecosystems. Autonomous drones offer agile access to
remote, challenging terrains, equipped with advanced imaging technology that
delivers both high-temporal and detailed spatial resolution, making them
valuable assets in the early detection and monitoring of wildfires. However,
the limited computation and battery resources of Unmanned Aerial Vehicles
(UAVs) pose significant challenges in implementing robust and efficient image
classification models. Current works in this domain often operate offline,
emphasizing the need for solutions that can perform inference in real time,
given the constraints of UAVs. To address these challenges, this paper aims to
develop a real-time image classification and fire segmentation model. It
presents a comprehensive investigation into hardware acceleration using the
Jetson Nano P3450 and the implications of TensorRT, NVIDIA's high-performance
deep-learning inference library, on fire classification accuracy and speed. The
study includes implementations of Quantization Aware Training (QAT), Automatic
Mixed Precision (AMP), and post-training mechanisms, comparing them against the
latest baselines for fire segmentation and classification. All experiments
utilize the FLAME dataset - an image dataset collected by low-altitude drones
during a prescribed forest fire. This work contributes to the ongoing efforts
to enable real-time, on-board wildfire detection capabilities for UAVs,
addressing speed and the computational and energy constraints of these crucial
monitoring systems. The results show a 13% increase in classification speed
compared to similar models without hardware optimization. Comparatively, loss
and accuracy are within 1.225% of the original values.
Related papers
- Detecting Wildfires on UAVs with Real-time Segmentation Trained by Larger Teacher Models [0.0]
Early detection of wildfires is essential to prevent large-scale fires resulting in extensive environmental, structural, and societal damage.
Uncrewed aerial vehicles (UAVs) can cover large remote areas effectively with quick deployment requiring minimal infrastructure.
In remote areas, however, the UAVs are limited to on-board computing for detection due to the lack of high-bandwidth mobile networks.
This study shows how small specialised segmentation models can be trained using only bounding box labels.
arXiv Detail & Related papers (2024-08-19T11:42:54Z) - SegNet: A Segmented Deep Learning based Convolutional Neural Network Approach for Drones Wildfire Detection [2.07180164747172]
This research addresses the pressing challenge of enhancing processing times and detection capabilities in Unmanned Aerial Vehicle (UAV)/drone imagery for global wildfire detection.
We focus on reducing feature maps to boost both time resolution and accuracy significantly advancing processing speeds and accuracy in real-time wildfire detection.
arXiv Detail & Related papers (2024-02-29T15:23:12Z) - Efficient Real-time Smoke Filtration with 3D LiDAR for Search and Rescue
with Autonomous Heterogeneous Robotic Systems [56.838297900091426]
Smoke and dust affect the performance of any mobile robotic platform due to their reliance on onboard perception systems.
This paper proposes a novel modular computation filtration pipeline based on intensity and spatial information.
arXiv Detail & Related papers (2023-08-14T16:48:57Z) - Image-Based Fire Detection in Industrial Environments with YOLOv4 [53.180678723280145]
This work looks into the potential of AI to detect and recognize fires and reduce detection time using object detection on an image stream.
To our end, we collected and labeled appropriate data from several public sources, which have been used to train and evaluate several models based on the popular YOLOv4 object detector.
arXiv Detail & Related papers (2022-12-09T11:32:36Z) - Deep Reinforcement Learning for Task Offloading in UAV-Aided Smart Farm
Networks [3.6118662460334527]
We introduce a Deep Q-Learning (DQL) approach to solve this multi-objective problem.
We show that our proposed DQL-based method achieves comparable results when it comes to the UAVs' remaining battery levels and percentage of deadline violations.
arXiv Detail & Related papers (2022-09-15T15:29:57Z) - Rethinking Drone-Based Search and Rescue with Aerial Person Detection [79.76669658740902]
The visual inspection of aerial drone footage is an integral part of land search and rescue (SAR) operations today.
We propose a novel deep learning algorithm to automate this aerial person detection (APD) task.
We present the novel Aerial Inspection RetinaNet (AIR) algorithm as the combination of these contributions.
arXiv Detail & Related papers (2021-11-17T21:48:31Z) - Meta-UDA: Unsupervised Domain Adaptive Thermal Object Detection using
Meta-Learning [64.92447072894055]
Infrared (IR) cameras are robust under adverse illumination and lighting conditions.
We propose an algorithm meta-learning framework to improve existing UDA methods.
We produce a state-of-the-art thermal detector for the KAIST and DSIAC datasets.
arXiv Detail & Related papers (2021-10-07T02:28:18Z) - Object Detection in Thermal Spectrum for Advanced Driver-Assistance
Systems (ADAS) [0.5156484100374058]
Object detection in thermal infrared spectrum provides more reliable data source in low-lighting conditions and different weather conditions.
This paper is about exploring and adapting state-of-the-art object and vision framework on thermal vision with seven distinct classes for advanced driver-assistance systems (ADAS)
The trained network variants on public datasets are validated on test data with three different test approaches.
The efficacy of trained networks is tested on locally gathered novel test-data captured with an uncooled LWIR prototype thermal camera.
arXiv Detail & Related papers (2021-09-20T21:38:55Z) - Lidar Light Scattering Augmentation (LISA): Physics-based Simulation of
Adverse Weather Conditions for 3D Object Detection [60.89616629421904]
Lidar-based object detectors are critical parts of the 3D perception pipeline in autonomous navigation systems such as self-driving cars.
They are sensitive to adverse weather conditions such as rain, snow and fog due to reduced signal-to-noise ratio (SNR) and signal-to-background ratio (SBR)
arXiv Detail & Related papers (2021-07-14T21:10:47Z) - 3D UAV Trajectory and Data Collection Optimisation via Deep
Reinforcement Learning [75.78929539923749]
Unmanned aerial vehicles (UAVs) are now beginning to be deployed for enhancing the network performance and coverage in wireless communication.
It is challenging to obtain an optimal resource allocation scheme for the UAV-assisted Internet of Things (IoT)
In this paper, we design a new UAV-assisted IoT systems relying on the shortest flight path of the UAVs while maximising the amount of data collected from IoT devices.
arXiv Detail & Related papers (2021-06-06T14:08:41Z) - EmergencyNet: Efficient Aerial Image Classification for Drone-Based
Emergency Monitoring Using Atrous Convolutional Feature Fusion [8.634988828030245]
This article focuses on the efficient aerial image classification from on-board a UAV for emergency response/monitoring applications.
A dedicated Aerial Image Database for Emergency Response applications is introduced and a comparative analysis of existing approaches is performed.
A lightweight convolutional neural network architecture is proposed, referred to as EmergencyNet, based on atrous convolutions to process multiresolution features.
arXiv Detail & Related papers (2021-04-28T20:24:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.