SegNet: A Segmented Deep Learning based Convolutional Neural Network Approach for Drones Wildfire Detection
- URL: http://arxiv.org/abs/2405.00031v1
- Date: Thu, 29 Feb 2024 15:23:12 GMT
- Title: SegNet: A Segmented Deep Learning based Convolutional Neural Network Approach for Drones Wildfire Detection
- Authors: Aditya V. Jonnalagadda, Hashim A. Hashim,
- Abstract summary: This research addresses the pressing challenge of enhancing processing times and detection capabilities in Unmanned Aerial Vehicle (UAV)/drone imagery for global wildfire detection.
We focus on reducing feature maps to boost both time resolution and accuracy significantly advancing processing speeds and accuracy in real-time wildfire detection.
- Score: 2.07180164747172
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This research addresses the pressing challenge of enhancing processing times and detection capabilities in Unmanned Aerial Vehicle (UAV)/drone imagery for global wildfire detection, despite limited datasets. Proposing a Segmented Neural Network (SegNet) selection approach, we focus on reducing feature maps to boost both time resolution and accuracy significantly advancing processing speeds and accuracy in real-time wildfire detection. This paper contributes to increased processing speeds enabling real-time detection capabilities for wildfire, increased detection accuracy of wildfire, and improved detection capabilities of early wildfire, through proposing a new direction for image classification of amorphous objects like fire, water, smoke, etc. Employing Convolutional Neural Networks (CNNs) for image classification, emphasizing on the reduction of irrelevant features vital for deep learning processes, especially in live feed data for fire detection. Amidst the complexity of live feed data in fire detection, our study emphasizes on image feed, highlighting the urgency to enhance real-time processing. Our proposed algorithm combats feature overload through segmentation, addressing challenges arising from diverse features like objects, colors, and textures. Notably, a delicate balance of feature map size and dataset adequacy is pivotal. Several research papers use smaller image sizes, compromising feature richness which necessitating a new approach. We illuminate the critical role of pixel density in retaining essential details, especially for early wildfire detection. By carefully selecting number of filters during training, we underscore the significance of higher pixel density for proper feature selection. The proposed SegNet approach is rigorously evaluated using real-world dataset obtained by a drone flight and compared to state-of-the-art literature.
Related papers
- Hardware Acceleration for Real-Time Wildfire Detection Onboard Drone
Networks [6.313148708539912]
wildfire detection in remote and forest areas is crucial for minimizing devastation and preserving ecosystems.
Drones offer agile access to remote, challenging terrains, equipped with advanced imaging technology.
limited computation and battery resources pose challenges in implementing and efficient image classification models.
This paper aims to develop a real-time image classification and fire segmentation model.
arXiv Detail & Related papers (2024-01-16T04:16:46Z) - Innovative Horizons in Aerial Imagery: LSKNet Meets DiffusionDet for
Advanced Object Detection [55.2480439325792]
We present an in-depth evaluation of an object detection model that integrates the LSKNet backbone with the DiffusionDet head.
The proposed model achieves a mean average precision (MAP) of approximately 45.7%, which is a significant improvement.
This advancement underscores the effectiveness of the proposed modifications and sets a new benchmark in aerial image analysis.
arXiv Detail & Related papers (2023-11-21T19:49:13Z) - Fire Detection From Image and Video Using YOLOv5 [0.0]
An improved YOLOv5 fire detection deep learning algorithm is proposed.
Fire-YOLOv5 attains excellent results compared to state-of-the-art object detection networks.
When the input image size is 416 x 416 resolution, the average detection time is 0.12 s per frame.
arXiv Detail & Related papers (2023-10-10T06:37:03Z) - Learning Heavily-Degraded Prior for Underwater Object Detection [59.5084433933765]
This paper seeks transferable prior knowledge from detector-friendly images.
It is based on statistical observations that, the heavily degraded regions of detector-friendly (DFUI) and underwater images have evident feature distribution gaps.
Our method with higher speeds and less parameters still performs better than transformer-based detectors.
arXiv Detail & Related papers (2023-08-24T12:32:46Z) - Unsupervised Wildfire Change Detection based on Contrastive Learning [1.53934570513443]
The accurate characterization of the severity of the wildfire event contributes to the characterization of the fuel conditions in fire-prone areas.
The aim of this study is to develop an autonomous system built on top of high-resolution multispectral satellite imagery, with an advanced deep learning method for detecting burned area change.
arXiv Detail & Related papers (2022-11-26T20:13:14Z) - Deep Convolutional Pooling Transformer for Deepfake Detection [54.10864860009834]
We propose a deep convolutional Transformer to incorporate decisive image features both locally and globally.
Specifically, we apply convolutional pooling and re-attention to enrich the extracted features and enhance efficacy.
The proposed solution consistently outperforms several state-of-the-art baselines on both within- and cross-dataset experiments.
arXiv Detail & Related papers (2022-09-12T15:05:41Z) - Infrared Small-Dim Target Detection with Transformer under Complex
Backgrounds [155.388487263872]
We propose a new infrared small-dim target detection method with the transformer.
We adopt the self-attention mechanism of the transformer to learn the interaction information of image features in a larger range.
We also design a feature enhancement module to learn more features of small-dim targets.
arXiv Detail & Related papers (2021-09-29T12:23:41Z) - Lightweight Convolutional Neural Network with Gaussian-based Grasping
Representation for Robotic Grasping Detection [4.683939045230724]
Current object detectors are difficult to strike a balance between high accuracy and fast inference speed.
We present an efficient and robust fully convolutional neural network model to perform robotic grasping pose estimation.
The network is an order of magnitude smaller than other excellent algorithms.
arXiv Detail & Related papers (2021-01-25T16:36:53Z) - Active Fire Detection in Landsat-8 Imagery: a Large-Scale Dataset and a
Deep-Learning Study [1.3764085113103217]
This paper introduces a new large-scale dataset for active fire detection using deep learning techniques.
We present a study on how different convolutional neural network architectures can be used to approximate handcrafted algorithms.
The proposed dataset, source codes and trained models are available on Github.
arXiv Detail & Related papers (2021-01-09T19:05:03Z) - Robust Data Hiding Using Inverse Gradient Attention [82.73143630466629]
In the data hiding task, each pixel of cover images should be treated differently since they have divergent tolerabilities.
We propose a novel deep data hiding scheme with Inverse Gradient Attention (IGA), combing the ideas of adversarial learning and attention mechanism.
Empirically, extensive experiments show that the proposed model outperforms the state-of-the-art methods on two prevalent datasets.
arXiv Detail & Related papers (2020-11-21T19:08:23Z) - Depthwise Non-local Module for Fast Salient Object Detection Using a
Single Thread [136.2224792151324]
We propose a new deep learning algorithm for fast salient object detection.
The proposed algorithm achieves competitive accuracy and high inference efficiency simultaneously with a single CPU thread.
arXiv Detail & Related papers (2020-01-22T15:23:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.