Real-Time Aerial Fire Detection on Resource-Constrained Devices Using Knowledge Distillation
- URL: http://arxiv.org/abs/2502.20979v1
- Date: Fri, 28 Feb 2025 11:49:58 GMT
- Title: Real-Time Aerial Fire Detection on Resource-Constrained Devices Using Knowledge Distillation
- Authors: Sabina Jangirova, Branislava Jankovic, Waseem Ullah, Latif U. Khan, Mohsen Guizani,
- Abstract summary: Wildfire catastrophes cause significant environmental degradation, human losses, and financial damage.<n>Current systems rely primarily on fixed CCTV cameras with a limited field of view, restricting their effectiveness in large outdoor environments.<n>We present a lightweight fire detection model based on MobileViT-S, compressed through the distillation of knowledge from a stronger teacher model.
- Score: 29.875425833515973
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Wildfire catastrophes cause significant environmental degradation, human losses, and financial damage. To mitigate these severe impacts, early fire detection and warning systems are crucial. Current systems rely primarily on fixed CCTV cameras with a limited field of view, restricting their effectiveness in large outdoor environments. The fusion of intelligent fire detection with remote sensing improves coverage and mobility, enabling monitoring in remote and challenging areas. Existing approaches predominantly utilize convolutional neural networks and vision transformer models. While these architectures provide high accuracy in fire detection, their computational complexity limits real-time performance on edge devices such as UAVs. In our work, we present a lightweight fire detection model based on MobileViT-S, compressed through the distillation of knowledge from a stronger teacher model. The ablation study highlights the impact of a teacher model and the chosen distillation technique on the model's performance improvement. We generate activation map visualizations using Grad-CAM to confirm the model's ability to focus on relevant fire regions. The high accuracy and efficiency of the proposed model make it well-suited for deployment on satellites, UAVs, and IoT devices for effective fire detection. Experiments on common fire benchmarks demonstrate that our model suppresses the state-of-the-art model by 0.44%, 2.00% while maintaining a compact model size. Our model delivers the highest processing speed among existing works, achieving real-time performance on resource-constrained devices.
Related papers
- Understanding and Improving Training-Free AI-Generated Image Detections with Vision Foundation Models [68.90917438865078]
Deepfake techniques for facial synthesis and editing pose serious risks for generative models.<n>In this paper, we investigate how detection performance varies across model backbones, types, and datasets.<n>We introduce Contrastive Blur, which enhances performance on facial images, and MINDER, which addresses noise type bias, balancing performance across domains.
arXiv Detail & Related papers (2024-11-28T13:04:45Z) - CCi-YOLOv8n: Enhanced Fire Detection with CARAFE and Context-Guided Modules [0.0]
Fire incidents in urban and forested areas pose serious threats.
We present CCi-YOLOv8n, an enhanced YOLOv8 model with targeted improvements for detecting small fires and smoke.
arXiv Detail & Related papers (2024-11-17T09:31:04Z) - EFA-YOLO: An Efficient Feature Attention Model for Fire and Flame Detection [3.334973867478745]
We propose two key modules: EAConv (Efficient Attention Convolution) and EADown (Efficient Attention Downsampling)
Based on these two modules, we design an efficient and lightweight flame detection model, EFA-YOLO (Efficient Feature Attention YOLO)
EFA-YOLO exhibits a significant enhancement in detection accuracy (mAP) and inference speed, with model parameter amount is reduced by 94.6 and the inference speed is improved by 88 times.
arXiv Detail & Related papers (2024-09-19T10:20:07Z) - TSCM: A Teacher-Student Model for Vision Place Recognition Using Cross-Metric Knowledge Distillation [6.856317526681759]
Visual place recognition plays a pivotal role in autonomous exploration and navigation of mobile robots.<n>Existing methods overcome this by exploiting powerful yet large networks.<n>We propose a high-performance teacher and lightweight student distillation framework called TSCM.
arXiv Detail & Related papers (2024-04-02T02:29:41Z) - Hardware Acceleration for Real-Time Wildfire Detection Onboard Drone
Networks [6.313148708539912]
wildfire detection in remote and forest areas is crucial for minimizing devastation and preserving ecosystems.
Drones offer agile access to remote, challenging terrains, equipped with advanced imaging technology.
limited computation and battery resources pose challenges in implementing and efficient image classification models.
This paper aims to develop a real-time image classification and fire segmentation model.
arXiv Detail & Related papers (2024-01-16T04:16:46Z) - Diffusion-Based Particle-DETR for BEV Perception [94.88305708174796]
Bird-Eye-View (BEV) is one of the most widely-used scene representations for visual perception in Autonomous Vehicles (AVs)
Recent diffusion-based methods offer a promising approach to uncertainty modeling for visual perception but fail to effectively detect small objects in the large coverage of the BEV.
Here, we address this problem by combining the diffusion paradigm with current state-of-the-art 3D object detectors in BEV.
arXiv Detail & Related papers (2023-12-18T09:52:14Z) - Image-Based Fire Detection in Industrial Environments with YOLOv4 [53.180678723280145]
This work looks into the potential of AI to detect and recognize fires and reduce detection time using object detection on an image stream.
To our end, we collected and labeled appropriate data from several public sources, which have been used to train and evaluate several models based on the popular YOLOv4 object detector.
arXiv Detail & Related papers (2022-12-09T11:32:36Z) - Meta-UDA: Unsupervised Domain Adaptive Thermal Object Detection using
Meta-Learning [64.92447072894055]
Infrared (IR) cameras are robust under adverse illumination and lighting conditions.
We propose an algorithm meta-learning framework to improve existing UDA methods.
We produce a state-of-the-art thermal detector for the KAIST and DSIAC datasets.
arXiv Detail & Related papers (2021-10-07T02:28:18Z) - Lidar Light Scattering Augmentation (LISA): Physics-based Simulation of
Adverse Weather Conditions for 3D Object Detection [60.89616629421904]
Lidar-based object detectors are critical parts of the 3D perception pipeline in autonomous navigation systems such as self-driving cars.
They are sensitive to adverse weather conditions such as rain, snow and fog due to reduced signal-to-noise ratio (SNR) and signal-to-background ratio (SBR)
arXiv Detail & Related papers (2021-07-14T21:10:47Z) - Assessing out-of-domain generalization for robust building damage
detection [78.6363825307044]
Building damage detection can be automated by applying computer vision techniques to satellite imagery.
Models must be robust to a shift in distribution between disaster imagery available for training and the images of the new event.
We argue that future work should focus on the OOD regime instead.
arXiv Detail & Related papers (2020-11-20T10:30:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.