論文の概要: CycLight: learning traffic signal cooperation with a cycle-level
strategy
- arxiv url: http://arxiv.org/abs/2401.08121v1
- Date: Tue, 16 Jan 2024 05:28:12 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-17 15:01:44.863147
- Title: CycLight: learning traffic signal cooperation with a cycle-level
strategy
- Title(参考訳): CycLight: サイクルレベルの戦略による交通信号の協調学習
- Authors: Gengyue Han, Xiaohan Liu, Xianyue Peng, Hao Wang, Yu Han
- Abstract要約: 本研究では,ネットワークレベル適応交通信号制御(NATSC)システムのための新しいサイクルレベル深部強化学習(RL)手法であるCycLightを紹介する。
ステップバイステップの決定にフォーカスする従来のRLベースのトラフィックコントローラとは異なり、CycLightはサイクルレベルの戦略を採用し、サイクル長を最適化し、同時に分割する。
- 参考スコア(独自算出の注目度): 10.303270722832924
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This study introduces CycLight, a novel cycle-level deep reinforcement
learning (RL) approach for network-level adaptive traffic signal control
(NATSC) systems. Unlike most traditional RL-based traffic controllers that
focus on step-by-step decision making, CycLight adopts a cycle-level strategy,
optimizing cycle length and splits simultaneously using Parameterized Deep
Q-Networks (PDQN) algorithm. This cycle-level approach effectively reduces the
computational burden associated with frequent data communication, meanwhile
enhancing the practicality and safety of real-world applications. A
decentralized framework is formulated for multi-agent cooperation, while
attention mechanism is integrated to accurately assess the impact of the
surroundings on the current intersection. CycLight is tested in a large
synthetic traffic grid using the microscopic traffic simulation tool, SUMO.
Experimental results not only demonstrate the superiority of CycLight over
other state-of-the-art approaches but also showcase its robustness against
information transmission delays.
- Abstract(参考訳): 本研究では,ネットワークレベル適応交通信号制御(NATSC)システムのための新しいサイクルレベル深部強化学習(RL)手法であるCycLightを紹介する。
ステップバイステップの決定に重点を置く従来のRLベースのトラヒックコントローラとは異なり、CycLightはサイクルレベルの戦略を採用し、サイクル長を最適化し、パラメータ化されたディープ・ネットワークワークス(PDQN)アルゴリズムを使用して同時に分割する。
このサイクルレベルのアプローチは、実世界のアプリケーションの実用性と安全性を高めつつ、頻繁なデータ通信に関連する計算負荷を効果的に低減する。
マルチエージェント協調のために分散フレームワークを定式化し、現在の交差点における周囲の影響を正確に評価するために注意機構を統合する。
CycLightは、顕微鏡トラフィックシミュレーションツールSUMOを用いて、大規模な合成トラフィックグリッドでテストされる。
実験結果は,CycLightが他の最先端アプローチよりも優れていることを示すだけでなく,情報伝送遅延に対する堅牢性を示す。
関連論文リスト
- Reinforcement Learning for Adaptive Traffic Signal Control: Turn-Based and Time-Based Approaches to Reduce Congestion [2.733700237741334]
本稿では,交差点における信号処理の強化にReinforcement Learning(強化学習)を用いることについて検討する。
本稿では,リアルタイム待ち行列長に基づく信号の動的優先順位付けを行うターンベースエージェントと,交通条件に応じた信号位相長の調整を行うタイムベースエージェントの2つのアルゴリズムを紹介する。
シミュレーションの結果、両RLアルゴリズムは従来の信号制御システムよりも大幅に優れていた。
論文 参考訳(メタデータ) (2024-08-28T12:35:56Z) - Towards Multi-agent Reinforcement Learning based Traffic Signal Control through Spatio-temporal Hypergraphs [19.107744041461316]
交通信号制御システム(TSCS)は、インテリジェントな交通管理に不可欠なものであり、効率的な車両の流れを育んでいる。
従来のアプローチでは、道路網を標準的なグラフに単純化することが多い。
本稿では,インテリジェントトラフィック制御を実現するための新しいTSCSフレームワークを提案する。
論文 参考訳(メタデータ) (2024-04-17T02:46:18Z) - A Holistic Framework Towards Vision-based Traffic Signal Control with
Microscopic Simulation [53.39174966020085]
交通信号制御(TSC)は交通渋滞を低減し、交通の流れを円滑にし、アイドリング時間を短縮し、CO2排出量を減らすために重要である。
本研究では,道路交通の流れを視覚的観察によって調節するTSCのコンピュータビジョンアプローチについて検討する。
我々は、視覚ベースのTSCとそのベンチマークに向けて、TrafficDojoと呼ばれる総合的なトラフィックシミュレーションフレームワークを導入する。
論文 参考訳(メタデータ) (2024-03-11T16:42:29Z) - Learning to Sail Dynamic Networks: The MARLIN Reinforcement Learning
Framework for Congestion Control in Tactical Environments [53.08686495706487]
本稿では, 正確な並列化可能なエミュレーション環境を利用して, 戦術ネットワークの環境を再現するRLフレームワークを提案する。
衛星通信(SATCOM)とUHFワイドバンド(UHF)の無線リンク間のボトルネックリンク遷移を再現した条件下で、MARLINエージェントを訓練することにより、我々のRL学習フレームワークを評価する。
論文 参考訳(メタデータ) (2023-06-27T16:15:15Z) - DenseLight: Efficient Control for Large-scale Traffic Signals with Dense
Feedback [109.84667902348498]
交通信号制御(TSC)は、道路網における車両の平均走行時間を短縮することを目的としている。
従来のTSC手法は、深い強化学習を利用して制御ポリシーを探索する。
DenseLightは、不偏報酬関数を用いてポリシーの有効性をフィードバックする新しいRTLベースのTSC手法である。
論文 参考訳(メタデータ) (2023-06-13T05:58:57Z) - Active RIS-aided EH-NOMA Networks: A Deep Reinforcement Learning
Approach [66.53364438507208]
アクティブな再構成可能なインテリジェントサーフェス(RIS)支援マルチユーザダウンリンク通信システムについて検討した。
非直交多重アクセス(NOMA)はスペクトル効率を向上させるために使用され、活性RISはエネルギー回収(EH)によって駆動される。
ユーザの動的通信状態を予測するために,高度なLSTMベースのアルゴリズムを開発した。
増幅行列と位相シフト行列RISを結合制御するためにDDPGに基づくアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-04-11T13:16:28Z) - MARLIN: Soft Actor-Critic based Reinforcement Learning for Congestion
Control in Real Networks [63.24965775030673]
そこで本研究では,汎用的な渋滞制御(CC)アルゴリズムを設計するための新しい強化学習(RL)手法を提案する。
我々の解であるMARLINは、Soft Actor-Criticアルゴリズムを用いてエントロピーとリターンの両方を最大化する。
我々は,MARLINを実ネットワーク上で訓練し,実ミスマッチを克服した。
論文 参考訳(メタデータ) (2023-02-02T18:27:20Z) - Efficient Pressure: Improving efficiency for signalized intersections [24.917612761503996]
交通信号制御(TSC)の問題を解決するために,強化学習(RL)が注目されている。
既存のRLベースの手法は、計算資源の面でコスト効率が良くなく、従来の手法よりも堅牢ではないため、ほとんどデプロイされない。
我々は,RTLに基づくアプローチに基づいて,トレーニングを減らし,複雑さを低減したTSCの適応制御系を構築する方法を示す。
論文 参考訳(メタデータ) (2021-12-04T13:49:58Z) - A Deep Reinforcement Learning Approach for Traffic Signal Control
Optimization [14.455497228170646]
非効率な信号制御手法は、交通渋滞やエネルギー浪費などの多くの問題を引き起こす可能性がある。
本稿では,アクター・クリティカル・ポリシー・グラデーション・アルゴリズムを拡張し,マルチエージェント・ディープ・決定性ポリシー・グラデーション(MADDPG)法を提案する。
論文 参考訳(メタデータ) (2021-07-13T14:11:04Z) - Millimeter Wave Communications with an Intelligent Reflector:
Performance Optimization and Distributional Reinforcement Learning [119.97450366894718]
ミリ波基地局のダウンリンクマルチユーザ通信を最適化するための新しいフレームワークを提案する。
チャネル状態情報(CSI)をリアルタイムで計測するために,チャネル推定手法を開発した。
最適赤外反射を学習し、ダウンリンク能力の期待を最大化するために、分布強化学習(DRL)手法を提案する。
論文 参考訳(メタデータ) (2020-02-24T22:18:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。