CycLight: learning traffic signal cooperation with a cycle-level
strategy
- URL: http://arxiv.org/abs/2401.08121v1
- Date: Tue, 16 Jan 2024 05:28:12 GMT
- Title: CycLight: learning traffic signal cooperation with a cycle-level
strategy
- Authors: Gengyue Han, Xiaohan Liu, Xianyue Peng, Hao Wang, Yu Han
- Abstract summary: This study introduces CycLight, a novel cycle-level deep reinforcement learning (RL) approach for network-level adaptive traffic signal control (NATSC) systems.
Unlike most traditional RL-based traffic controllers that focus on step-by-step decision making, CycLight adopts a cycle-level strategy, optimizing cycle length and splits simultaneously.
- Score: 10.303270722832924
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This study introduces CycLight, a novel cycle-level deep reinforcement
learning (RL) approach for network-level adaptive traffic signal control
(NATSC) systems. Unlike most traditional RL-based traffic controllers that
focus on step-by-step decision making, CycLight adopts a cycle-level strategy,
optimizing cycle length and splits simultaneously using Parameterized Deep
Q-Networks (PDQN) algorithm. This cycle-level approach effectively reduces the
computational burden associated with frequent data communication, meanwhile
enhancing the practicality and safety of real-world applications. A
decentralized framework is formulated for multi-agent cooperation, while
attention mechanism is integrated to accurately assess the impact of the
surroundings on the current intersection. CycLight is tested in a large
synthetic traffic grid using the microscopic traffic simulation tool, SUMO.
Experimental results not only demonstrate the superiority of CycLight over
other state-of-the-art approaches but also showcase its robustness against
information transmission delays.
Related papers
- Reinforcement Learning for Adaptive Traffic Signal Control: Turn-Based and Time-Based Approaches to Reduce Congestion [2.733700237741334]
This paper explores the use of Reinforcement Learning to enhance traffic signal operations at intersections.
We introduce two RL-based algorithms: a turn-based agent, which dynamically prioritizes traffic signals based on real-time queue lengths, and a time-based agent, which adjusts signal phase durations according to traffic conditions.
Simulation results demonstrate that both RL algorithms significantly outperform conventional traffic signal control systems.
arXiv Detail & Related papers (2024-08-28T12:35:56Z) - Towards Multi-agent Reinforcement Learning based Traffic Signal Control through Spatio-temporal Hypergraphs [19.107744041461316]
Traffic signal control systems (TSCSs) are integral to intelligent traffic management, fostering efficient vehicle flow.
Traditional approaches often simplify road networks into standard graphs.
We propose a novel TSCS framework to realize intelligent traffic control.
arXiv Detail & Related papers (2024-04-17T02:46:18Z) - A Holistic Framework Towards Vision-based Traffic Signal Control with
Microscopic Simulation [53.39174966020085]
Traffic signal control (TSC) is crucial for reducing traffic congestion that leads to smoother traffic flow, reduced idling time, and mitigated CO2 emissions.
In this study, we explore the computer vision approach for TSC that modulates on-road traffic flows through visual observation.
We introduce a holistic traffic simulation framework called TrafficDojo towards vision-based TSC and its benchmarking.
arXiv Detail & Related papers (2024-03-11T16:42:29Z) - Learning to Sail Dynamic Networks: The MARLIN Reinforcement Learning
Framework for Congestion Control in Tactical Environments [53.08686495706487]
This paper proposes an RL framework that leverages an accurate and parallelizable emulation environment to reenact the conditions of a tactical network.
We evaluate our RL learning framework by training a MARLIN agent in conditions replicating a bottleneck link transition between a Satellite Communication (SATCOM) and an UHF Wide Band (UHF) radio link.
arXiv Detail & Related papers (2023-06-27T16:15:15Z) - DenseLight: Efficient Control for Large-scale Traffic Signals with Dense
Feedback [109.84667902348498]
Traffic Signal Control (TSC) aims to reduce the average travel time of vehicles in a road network.
Most prior TSC methods leverage deep reinforcement learning to search for a control policy.
We propose DenseLight, a novel RL-based TSC method that employs an unbiased reward function to provide dense feedback on policy effectiveness.
arXiv Detail & Related papers (2023-06-13T05:58:57Z) - Active RIS-aided EH-NOMA Networks: A Deep Reinforcement Learning
Approach [66.53364438507208]
An active reconfigurable intelligent surface (RIS)-aided multi-user downlink communication system is investigated.
Non-orthogonal multiple access (NOMA) is employed to improve spectral efficiency, and the active RIS is powered by energy harvesting (EH)
An advanced LSTM based algorithm is developed to predict users' dynamic communication state.
A DDPG based algorithm is proposed to joint control the amplification matrix and phase shift matrix RIS.
arXiv Detail & Related papers (2023-04-11T13:16:28Z) - MARLIN: Soft Actor-Critic based Reinforcement Learning for Congestion
Control in Real Networks [63.24965775030673]
We propose a novel Reinforcement Learning (RL) approach to design generic Congestion Control (CC) algorithms.
Our solution, MARLIN, uses the Soft Actor-Critic algorithm to maximize both entropy and return.
We trained MARLIN on a real network with varying background traffic patterns to overcome the sim-to-real mismatch.
arXiv Detail & Related papers (2023-02-02T18:27:20Z) - Efficient Pressure: Improving efficiency for signalized intersections [24.917612761503996]
Reinforcement learning (RL) has attracted more attention to help solve the traffic signal control (TSC) problem.
Existing RL-based methods are rarely deployed considering that they are neither cost-effective in terms of computing resources nor more robust than traditional approaches.
We demonstrate how to construct an adaptive controller for TSC with less training and reduced complexity based on RL-based approach.
arXiv Detail & Related papers (2021-12-04T13:49:58Z) - A Deep Reinforcement Learning Approach for Traffic Signal Control
Optimization [14.455497228170646]
Inefficient traffic signal control methods may cause numerous problems, such as traffic congestion and waste of energy.
This paper first proposes a multi-agent deep deterministic policy gradient (MADDPG) method by extending the actor-critic policy gradient algorithms.
arXiv Detail & Related papers (2021-07-13T14:11:04Z) - Millimeter Wave Communications with an Intelligent Reflector:
Performance Optimization and Distributional Reinforcement Learning [119.97450366894718]
A novel framework is proposed to optimize the downlink multi-user communication of a millimeter wave base station.
A channel estimation approach is developed to measure the channel state information (CSI) in real-time.
A distributional reinforcement learning (DRL) approach is proposed to learn the optimal IR reflection and maximize the expectation of downlink capacity.
arXiv Detail & Related papers (2020-02-24T22:18:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.