Estimating Model Performance Under Covariate Shift Without Labels
- URL: http://arxiv.org/abs/2401.08348v3
- Date: Tue, 28 May 2024 08:38:16 GMT
- Title: Estimating Model Performance Under Covariate Shift Without Labels
- Authors: Jakub BiaĆek, Wojtek Kuberski, Nikolaos Perrakis, Albert Bifet,
- Abstract summary: We introduce Probabilistic Adaptive Performance Estimation (PAPE) for evaluating classification models on unlabeled data.
PAPE provides more accurate performance estimates than other evaluated methodologies.
- Score: 9.804680621164168
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Machine learning models often experience performance degradation post-deployment due to shifts in data distribution. It is challenging to assess model's performance accurately when labels are missing or delayed. Existing proxy methods, such as drift detection, fail to measure the effects of these shifts adequately. To address this, we introduce a new method, Probabilistic Adaptive Performance Estimation (PAPE), for evaluating classification models on unlabeled data that accurately quantifies the impact of covariate shift on model performance. It is model and data-type agnostic and works for various performance metrics. Crucially, PAPE operates independently of the original model, relying only on its predictions and probability estimates, and does not need any assumptions about the nature of the covariate shift, learning directly from data instead. We tested PAPE on tabular data using over 900 dataset-model combinations created from US census data, assessing its performance against multiple benchmarks. Overall, PAPE provided more accurate performance estimates than other evaluated methodologies.
Related papers
- Benchmark Transparency: Measuring the Impact of Data on Evaluation [6.307485015636125]
We propose an automated framework that measures the data point distribution across 6 different dimensions.
We use disproportional stratified sampling to measure how much the data distribution affects absolute (Acc/F1) and relative (Rank) model performance.
We find that the impact of the data is statistically significant and is often larger than the impact of changing the metric.
arXiv Detail & Related papers (2024-03-31T17:33:43Z) - Uncertainty-Calibrated Test-Time Model Adaptation without Forgetting [55.17761802332469]
Test-time adaptation (TTA) seeks to tackle potential distribution shifts between training and test data by adapting a given model w.r.t. any test sample.
Prior methods perform backpropagation for each test sample, resulting in unbearable optimization costs to many applications.
We propose an Efficient Anti-Forgetting Test-Time Adaptation (EATA) method which develops an active sample selection criterion to identify reliable and non-redundant samples.
arXiv Detail & Related papers (2024-03-18T05:49:45Z) - A prediction and behavioural analysis of machine learning methods for
modelling travel mode choice [0.26249027950824505]
We conduct a systematic comparison of different modelling approaches, across multiple modelling problems, in terms of the key factors likely to affect model choice.
Results indicate that the models with the highest disaggregate predictive performance provide poorer estimates of behavioural indicators and aggregate mode shares.
It is also observed that the MNL model performs robustly in a variety of situations, though ML techniques can improve the estimates of behavioural indices such as Willingness to Pay.
arXiv Detail & Related papers (2023-01-11T11:10:32Z) - Estimating Model Performance under Domain Shifts with Class-Specific
Confidence Scores [25.162667593654206]
We introduce class-wise calibration within the framework of performance estimation for imbalanced datasets.
We conduct experiments on four tasks and find the proposed modifications consistently improve the estimation accuracy for imbalanced datasets.
arXiv Detail & Related papers (2022-07-20T15:04:32Z) - Performance Prediction Under Dataset Shift [1.1602089225841632]
We study the generalization capabilities of various performance prediction models to new domains by learning on generated synthetic perturbations.
We propose a natural and effortless uncertainty estimation of the predicted accuracy that ensures reliable use of performance predictors.
arXiv Detail & Related papers (2022-06-21T19:40:58Z) - Understanding Factual Errors in Summarization: Errors, Summarizers,
Datasets, Error Detectors [105.12462629663757]
In this work, we aggregate factuality error annotations from nine existing datasets and stratify them according to the underlying summarization model.
We compare performance of state-of-the-art factuality metrics, including recent ChatGPT-based metrics, on this stratified benchmark and show that their performance varies significantly across different types of summarization models.
arXiv Detail & Related papers (2022-05-25T15:26:48Z) - PUMA: Performance Unchanged Model Augmentation for Training Data Removal [2.8468089304148445]
This paper presents a novel approach called Performance Unchanged Model Augmentation(PUMA)
The proposed PUMA framework explicitly models the influence of each training data point on the model's generalization ability.
We show the PUMA can effectively and efficiently remove the unique characteristics of marked training data without retraining the model.
arXiv Detail & Related papers (2022-03-02T03:40:17Z) - Leveraging Unlabeled Data to Predict Out-of-Distribution Performance [63.740181251997306]
Real-world machine learning deployments are characterized by mismatches between the source (training) and target (test) distributions.
In this work, we investigate methods for predicting the target domain accuracy using only labeled source data and unlabeled target data.
We propose Average Thresholded Confidence (ATC), a practical method that learns a threshold on the model's confidence, predicting accuracy as the fraction of unlabeled examples.
arXiv Detail & Related papers (2022-01-11T23:01:12Z) - Predicting with Confidence on Unseen Distributions [90.68414180153897]
We connect domain adaptation and predictive uncertainty literature to predict model accuracy on challenging unseen distributions.
We find that the difference of confidences (DoC) of a classifier's predictions successfully estimates the classifier's performance change over a variety of shifts.
We specifically investigate the distinction between synthetic and natural distribution shifts and observe that despite its simplicity DoC consistently outperforms other quantifications of distributional difference.
arXiv Detail & Related papers (2021-07-07T15:50:18Z) - Evaluating Prediction-Time Batch Normalization for Robustness under
Covariate Shift [81.74795324629712]
We call prediction-time batch normalization, which significantly improves model accuracy and calibration under covariate shift.
We show that prediction-time batch normalization provides complementary benefits to existing state-of-the-art approaches for improving robustness.
The method has mixed results when used alongside pre-training, and does not seem to perform as well under more natural types of dataset shift.
arXiv Detail & Related papers (2020-06-19T05:08:43Z) - Meta-Learned Confidence for Few-shot Learning [60.6086305523402]
A popular transductive inference technique for few-shot metric-based approaches, is to update the prototype of each class with the mean of the most confident query examples.
We propose to meta-learn the confidence for each query sample, to assign optimal weights to unlabeled queries.
We validate our few-shot learning model with meta-learned confidence on four benchmark datasets.
arXiv Detail & Related papers (2020-02-27T10:22:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.