Training and Comparison of nnU-Net and DeepMedic Methods for
Autosegmentation of Pediatric Brain Tumors
- URL: http://arxiv.org/abs/2401.08404v2
- Date: Tue, 30 Jan 2024 20:56:07 GMT
- Title: Training and Comparison of nnU-Net and DeepMedic Methods for
Autosegmentation of Pediatric Brain Tumors
- Authors: Arastoo Vossough, Nastaran Khalili, Ariana M. Familiar, Deep Gandhi,
Karthik Viswanathan, Wenxin Tu, Debanjan Haldar, Sina Bagheri, Hannah
Anderson, Shuvanjan Haldar, Phillip B. Storm, Adam Resnick, Jeffrey B. Ware,
Ali Nabavizadeh, Anahita Fathi Kazerooni
- Abstract summary: Two deep learning-based 3D segmentation models, DeepMedic and nnU-Net, were compared.
Pediatric-specific data trained nnU-Net model is superior to DeepMedic for whole tumor and subregion segmentation of pediatric brain tumors.
- Score: 0.08519384144663283
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Brain tumors are the most common solid tumors and the leading cause of
cancer-related death among children. Tumor segmentation is essential in
surgical and treatment planning, and response assessment and monitoring.
However, manual segmentation is time-consuming and has high inter-operator
variability, underscoring the need for more efficient methods. We compared two
deep learning-based 3D segmentation models, DeepMedic and nnU-Net, after
training with pediatric-specific multi-institutional brain tumor data using
based on multi-parametric MRI scans.Multi-parametric preoperative MRI scans of
339 pediatric patients (n=293 internal and n=46 external cohorts) with a
variety of tumor subtypes, were preprocessed and manually segmented into four
tumor subregions, i.e., enhancing tumor (ET), non-enhancing tumor (NET), cystic
components (CC), and peritumoral edema (ED). After training, performance of the
two models on internal and external test sets was evaluated using Dice scores,
sensitivity, and Hausdorff distance with reference to ground truth manual
segmentations. Dice score for nnU-Net internal test sets was (mean +/- SD
(median)) 0.9+/-0.07 (0.94) for WT, 0.77+/-0.29 for ET, 0.66+/-0.32 for NET,
0.71+/-0.33 for CC, and 0.71+/-0.40 for ED, respectively. For DeepMedic the
Dice scores were 0.82+/-0.16 for WT, 0.66+/-0.32 for ET, 0.48+/-0.27, for NET,
0.48+/-0.36 for CC, and 0.19+/-0.33 for ED, respectively. Dice scores were
significantly higher for nnU-Net (p<=0.01). External validation of the trained
nnU-Net model on the multi-institutional BraTS-PEDs 2023 dataset revealed high
generalization capability in segmentation of whole tumor and tumor core with
Dice scores of 0.87+/-0.13 (0.91) and 0.83+/-0.18 (0.89), respectively.
Pediatric-specific data trained nnU-Net model is superior to DeepMedic for
whole tumor and subregion segmentation of pediatric brain tumors.
Related papers
- TotalSegmentator MRI: Sequence-Independent Segmentation of 59 Anatomical Structures in MR images [62.53931644063323]
In this study we extended the capabilities of TotalSegmentator to MR images.
We trained an nnU-Net segmentation algorithm on this dataset and calculated similarity coefficients (Dice) to evaluate the model's performance.
The model significantly outperformed two other publicly available segmentation models (Dice score 0.824 versus 0.762; p0.001 and 0.762 versus 0.542; p)
arXiv Detail & Related papers (2024-05-29T20:15:54Z) - Convolutional Neural Networks for Segmentation of Malignant Pleural
Mesothelioma: Analysis of Probability Map Thresholds (CALGB 30901, Alliance) [3.5543234184232566]
Automated segmentation methods using deep learning can be employed to acquire volume.
The purpose of this study was to evaluate the impact of probability map threshold on MPM tumor delineations generated using a convolutional neural network (CNN)
CNN annotations consistently yielded smaller tumor volumes than radiologist contours.
arXiv Detail & Related papers (2023-11-30T22:07:07Z) - Improving Deep Learning Models for Pediatric Low-Grade Glioma Tumors
Molecular Subtype Identification Using 3D Probability Distributions of Tumor
Location [0.0]
CNN models for pLGG subtype identification rely on tumor segmentation.
We propose to augment the CNN models using tumor location probability in MRI data.
We achieved statistically significant improvements by incorporating tumor location into the CNN models.
arXiv Detail & Related papers (2022-10-13T18:30:11Z) - TotalSegmentator: robust segmentation of 104 anatomical structures in CT
images [48.50994220135258]
We present a deep learning segmentation model for body CT images.
The model can segment 104 anatomical structures relevant for use cases such as organ volumetry, disease characterization, and surgical or radiotherapy planning.
arXiv Detail & Related papers (2022-08-11T15:16:40Z) - EMT-NET: Efficient multitask network for computer-aided diagnosis of
breast cancer [58.720142291102135]
We propose an efficient and light-weighted learning architecture to classify and segment breast tumors simultaneously.
We incorporate a segmentation task into a tumor classification network, which makes the backbone network learn representations focused on tumor regions.
The accuracy, sensitivity, and specificity of tumor classification is 88.6%, 94.1%, and 85.3%, respectively.
arXiv Detail & Related papers (2022-01-13T05:24:40Z) - Multi-Threshold Attention U-Net (MTAU) based Model for Multimodal Brain
Tumor Segmentation in MRI scans [5.586191108738564]
Gliomas are one of the most frequent brain tumors and are classified into high grade and low grade gliomas.
Here, we have developed a multi-threshold model based on attention U-Net for identification of various regions of the tumor in magnetic resonance imaging (MRI)
The proposed model achieved mean Dice Coefficient of 0.59, 0.72, and 0.61 for enhancing tumor, whole tumor and tumor core respectively on the training dataset.
The same model gave mean Dice Coefficient of 0.57, 0.73, and 0.61 on the validation dataset and 0.59, 0.72, and 0.57 on the test dataset.
arXiv Detail & Related papers (2021-01-29T04:53:42Z) - Brain Tumor Segmentation and Survival Prediction using Automatic Hard
mining in 3D CNN Architecture [0.30098583327398537]
We utilize 3-D fully convolutional neural networks (CNN) to segment gliomas and its constituents from multimodal Magnetic Resonance Images (MRI)
The architecture uses dense connectivity patterns to reduce the number of weights and residual connections and is 0.448 with weights obtained from training this model with BraTS 2018 dataset.
Hard mining is done during training to train for the difficult cases of segmentation tasks by increasing the dice similarity coefficient (DSC) threshold to choose the hard cases as epoch increases.
arXiv Detail & Related papers (2021-01-05T14:34:16Z) - H2NF-Net for Brain Tumor Segmentation using Multimodal MR Imaging: 2nd
Place Solution to BraTS Challenge 2020 Segmentation Task [96.49879910148854]
Our H2NF-Net uses the single and cascaded HNF-Nets to segment different brain tumor sub-regions.
We trained and evaluated our model on the Multimodal Brain Tumor Challenge (BraTS) 2020 dataset.
Our method won the second place in the BraTS 2020 challenge segmentation task out of nearly 80 participants.
arXiv Detail & Related papers (2020-12-30T20:44:55Z) - DR-Unet104 for Multimodal MRI brain tumor segmentation [7.786297008452384]
We propose a 2D deep residual Unet with 104 convolutional layers (DR-Unet104) for lesion segmentation in brain MRIs.
We make multiple additions to the Unet architecture, including adding the 'bottleneck' residual block to the Unet encoder and adding dropout after each convolution block stack.
We produced a competitive lesion segmentation architecture, despite only 2D convolutions, having the added benefit that it can be used on lower power computers.
arXiv Detail & Related papers (2020-11-04T01:24:26Z) - Brain tumor segmentation with self-ensembled, deeply-supervised 3D U-net
neural networks: a BraTS 2020 challenge solution [56.17099252139182]
We automate and standardize the task of brain tumor segmentation with U-net like neural networks.
Two independent ensembles of models were trained, and each produced a brain tumor segmentation map.
Our solution achieved a Dice of 0.79, 0.89 and 0.84, as well as Hausdorff 95% of 20.4, 6.7 and 19.5mm on the final test dataset.
arXiv Detail & Related papers (2020-10-30T14:36:10Z) - Segmentation of the Myocardium on Late-Gadolinium Enhanced MRI based on
2.5 D Residual Squeeze and Excitation Deep Learning Model [55.09533240649176]
The aim of this work is to develop an accurate automatic segmentation method based on deep learning models for the myocardial borders on LGE-MRI.
A total number of 320 exams (with a mean number of 6 slices per exam) were used for training and 28 exams used for testing.
The performance analysis of the proposed ensemble model in the basal and middle slices was similar as compared to intra-observer study and slightly lower at apical slices.
arXiv Detail & Related papers (2020-05-27T20:44:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.