A New Logic For Pediatric Brain Tumor Segmentation
- URL: http://arxiv.org/abs/2411.01390v3
- Date: Tue, 18 Feb 2025 22:16:41 GMT
- Title: A New Logic For Pediatric Brain Tumor Segmentation
- Authors: Max Bengtsson, Elif Keles, Gorkem Durak, Syed Anwar, Yuri S. Velichko, Marius G. Linguraru, Angela J. Waanders, Ulas Bagci,
- Abstract summary: We present a novel approach for segmenting pediatric brain tumors using a deep learning architecture.
Our model delineates four distinct tumor labels and is benchmarked on a held-out PED BraTS 2024 test set.
We evaluate our model's performance against the state-of-the-art (SOTA) model.
- Score: 0.5942186563711294
- License:
- Abstract: In this paper, we present a novel approach for segmenting pediatric brain tumors using a deep learning architecture, inspired by expert radiologists' segmentation strategies. Our model delineates four distinct tumor labels and is benchmarked on a held-out PED BraTS 2024 test set (i.e., pediatric brain tumor datasets introduced by BraTS). Furthermore, we evaluate our model's performance against the state-of-the-art (SOTA) model using a new external dataset of 30 patients from CBTN (Children's Brain Tumor Network), labeled in accordance with the PED BraTS 2024 guidelines and 2023 BraTS Adult Glioma dataset. We compare segmentation outcomes with the winning algorithm from the PED BraTS 2023 challenge as the SOTA model. Our proposed algorithm achieved an average Dice score of 0.642 and an HD95 of 73.0 mm on the CBTN test data, outperforming the SOTA model, which achieved a Dice score of 0.626 and an HD95 of 84.0 mm. Moreover, our model exhibits strong generalizability, attaining a 0.877 Dice score in whole tumor segmentation on the BraTS 2023 Adult Glioma dataset, surpassing existing SOTA. Our results indicate that the proposed model is a step towards providing more accurate segmentation for pediatric brain tumors, which is essential for evaluating therapy response and monitoring patient progress. Our source code is available at https://github.com/NUBagciLab/Pediatric-Brain-Tumor-Segmentation-Model.
Related papers
- Magnetic Resonance Imaging Feature-Based Subtyping and Model Ensemble for Enhanced Brain Tumor Segmentation [6.14919256198409]
We propose a deep learning-based ensemble approach that integrates state-of-the-art segmentation models.
Given the heterogeneous nature of the tumors present in the BraTS datasets, this approach enhances the precision and generalizability of segmentation models.
arXiv Detail & Related papers (2024-12-05T12:00:00Z) - Optimizing Brain Tumor Segmentation with MedNeXt: BraTS 2024 SSA and Pediatrics [0.6820272276959313]
This study presents our methodology for segmenting tumors in the BraTS-2024 SSA and Pediatric Tumors tasks using MedNeXt.
Our approach demonstrated strong performance on the unseen validation set, achieving an average Dice Similarity Coefficient (DSC) of 0.896 on the BraTS-2024 SSA dataset and an average DSC of 0.830 on the BraTS Pediatric Tumor dataset.
arXiv Detail & Related papers (2024-11-24T15:19:19Z) - TotalSegmentator MRI: Sequence-Independent Segmentation of 59 Anatomical Structures in MR images [62.53931644063323]
In this study we extended the capabilities of TotalSegmentator to MR images.
We trained an nnU-Net segmentation algorithm on this dataset and calculated similarity coefficients (Dice) to evaluate the model's performance.
The model significantly outperformed two other publicly available segmentation models (Dice score 0.824 versus 0.762; p0.001 and 0.762 versus 0.542; p)
arXiv Detail & Related papers (2024-05-29T20:15:54Z) - Analysis of the BraTS 2023 Intracranial Meningioma Segmentation Challenge [44.586530244472655]
We describe the design and results from the BraTS 2023 Intracranial Meningioma Challenge.
The BraTS Meningioma Challenge differed from prior BraTS Glioma challenges in that it focused on meningiomas.
The top ranked team had a lesion-wise median dice similarity coefficient (DSC) of 0.976, 0.976, and 0.964 for enhancing tumor, tumor core, and whole tumor.
arXiv Detail & Related papers (2024-05-16T03:23:57Z) - Multi-class Brain Tumor Segmentation using Graph Attention Network [3.3635982995145994]
This work introduces an efficient brain tumor summation model by exploiting the advancement in MRI and graph neural networks (GNNs)
The model represents the volumetric MRI as a region adjacency graph (RAG) and learns to identify the type of tumors through a graph attention network (GAT)
arXiv Detail & Related papers (2023-02-11T04:30:40Z) - Multimodal CNN Networks for Brain Tumor Segmentation in MRI: A BraTS
2022 Challenge Solution [0.0]
This paper describes our contribution to the BraTS 2022 Continuous Evaluation challenge.
We propose a new ensemble of multiple deep learning frameworks namely, DeepSeg, nnU-Net, and DeepSCAN for automatic glioma boundaries detection in pre-operative MRI.
It is worth noting that our ensemble models took first place in the final evaluation on the BraTS testing dataset with Dice scores of 0.9294, 0.8788, and 0.8803, and Hausdorf distance of 5.23, 13.54, and 12.05, for the whole tumor, tumor core, and enhancing tumor, respectively.
arXiv Detail & Related papers (2022-12-19T09:14:23Z) - TotalSegmentator: robust segmentation of 104 anatomical structures in CT
images [48.50994220135258]
We present a deep learning segmentation model for body CT images.
The model can segment 104 anatomical structures relevant for use cases such as organ volumetry, disease characterization, and surgical or radiotherapy planning.
arXiv Detail & Related papers (2022-08-11T15:16:40Z) - HNF-Netv2 for Brain Tumor Segmentation using multi-modal MR Imaging [86.52489226518955]
We extend our HNF-Net to HNF-Netv2 by adding inter-scale and intra-scale semantic discrimination enhancing blocks.
Our method won the RSNA 2021 Brain Tumor AI Challenge Prize (Segmentation Task)
arXiv Detail & Related papers (2022-02-10T06:34:32Z) - Glioma Prognosis: Segmentation of the Tumor and Survival Prediction
using Shape, Geometric and Clinical Information [13.822139791199106]
We exploit a convolutional neural network (CNN) with hypercolumn technique to segment tumor from healthy brain tissue.
Our model achieves a mean dice accuracy of 87.315%, 77.04% and 70.22% for the whole tumor, tumor core and enhancing tumor respectively.
arXiv Detail & Related papers (2021-04-02T10:49:05Z) - H2NF-Net for Brain Tumor Segmentation using Multimodal MR Imaging: 2nd
Place Solution to BraTS Challenge 2020 Segmentation Task [96.49879910148854]
Our H2NF-Net uses the single and cascaded HNF-Nets to segment different brain tumor sub-regions.
We trained and evaluated our model on the Multimodal Brain Tumor Challenge (BraTS) 2020 dataset.
Our method won the second place in the BraTS 2020 challenge segmentation task out of nearly 80 participants.
arXiv Detail & Related papers (2020-12-30T20:44:55Z) - Brain tumor segmentation with self-ensembled, deeply-supervised 3D U-net
neural networks: a BraTS 2020 challenge solution [56.17099252139182]
We automate and standardize the task of brain tumor segmentation with U-net like neural networks.
Two independent ensembles of models were trained, and each produced a brain tumor segmentation map.
Our solution achieved a Dice of 0.79, 0.89 and 0.84, as well as Hausdorff 95% of 20.4, 6.7 and 19.5mm on the final test dataset.
arXiv Detail & Related papers (2020-10-30T14:36:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.