The Gaps between Pre-train and Downstream Settings in Bias Evaluation
and Debiasing
- URL: http://arxiv.org/abs/2401.08511v1
- Date: Tue, 16 Jan 2024 17:15:08 GMT
- Title: The Gaps between Pre-train and Downstream Settings in Bias Evaluation
and Debiasing
- Authors: Masahiro Kaneko, Danushka Bollegala, Timothy Baldwin
- Abstract summary: In-Context Learning (ICL) induces smaller changes to PLMs compared to FT-based debiasing methods.
ICL-based debiasing methods show a higher correlation between intrinsic and extrinsic bias scores compared to FT-based methods.
- Score: 74.7319697510621
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The output tendencies of Pre-trained Language Models (PLM) vary markedly
before and after Fine-Tuning (FT) due to the updates to the model parameters.
These divergences in output tendencies result in a gap in the social biases of
PLMs. For example, there exits a low correlation between intrinsic bias scores
of a PLM and its extrinsic bias scores under FT-based debiasing methods.
Additionally, applying FT-based debiasing methods to a PLM leads to a decline
in performance in downstream tasks. On the other hand, PLMs trained on large
datasets can learn without parameter updates via In-Context Learning (ICL)
using prompts. ICL induces smaller changes to PLMs compared to FT-based
debiasing methods. Therefore, we hypothesize that the gap observed in
pre-trained and FT models does not hold true for debiasing methods that use
ICL. In this study, we demonstrate that ICL-based debiasing methods show a
higher correlation between intrinsic and extrinsic bias scores compared to
FT-based methods. Moreover, the performance degradation due to debiasing is
also lower in the ICL case compared to that in the FT case.
Related papers
- Towards Understanding Task-agnostic Debiasing Through the Lenses of Intrinsic Bias and Forgetfulness [10.081447621656523]
The impact on language modeling ability can be alleviated given a high-quality and long-contextualized debiasing corpus.
The effectiveness of task-agnostic debiasing hinges on the quantitative bias level of both the task-specific data used for downstream applications and the debiased model.
We propose a novel framework which can Propagate Socially-fair Debiasing to Downstream Fine-tuning, ProSocialTuning.
arXiv Detail & Related papers (2024-06-06T15:11:11Z) - A Channel-ensemble Approach: Unbiased and Low-variance Pseudo-labels is Critical for Semi-supervised Classification [61.473485511491795]
Semi-supervised learning (SSL) is a practical challenge in computer vision.
Pseudo-label (PL) methods, e.g., FixMatch and FreeMatch, obtain the State Of The Art (SOTA) performances in SSL.
We propose a lightweight channel-based ensemble method to consolidate multiple inferior PLs into the theoretically guaranteed unbiased and low-variance one.
arXiv Detail & Related papers (2024-03-27T09:49:37Z) - Causal Prompting: Debiasing Large Language Model Prompting based on Front-Door Adjustment [32.12998469814097]
A novel causal prompting method based on front-door adjustment is proposed to effectively mitigate Large Language Models (LLMs) biases.
Experimental results show that the proposed causal prompting approach achieves excellent performance across seven natural language processing datasets.
arXiv Detail & Related papers (2024-03-05T07:47:34Z) - ChatGPT Based Data Augmentation for Improved Parameter-Efficient Debiasing of LLMs [65.9625653425636]
Large Language models (LLMs) exhibit harmful social biases.
This work introduces a novel approach utilizing ChatGPT to generate synthetic training data.
arXiv Detail & Related papers (2024-02-19T01:28:48Z) - Prompt-Based Bias Calibration for Better Zero/Few-Shot Learning of Language Models [7.089534153472173]
We propose a null-input prompting method to calibrate intrinsic bias encoded in pre-trained language models.
Our method significantly improves zero/few-shot learning performance of LMs for both in-context learning and prompt-based fine-tuning.
arXiv Detail & Related papers (2024-02-15T22:54:24Z) - Marginal Debiased Network for Fair Visual Recognition [59.05212866862219]
We propose a novel marginal debiased network (MDN) to learn debiased representations.
Our MDN can achieve a remarkable performance on under-represented samples.
arXiv Detail & Related papers (2024-01-04T08:57:09Z) - Self-Supervised Position Debiasing for Large Language Models [39.261233221850155]
We propose a self-supervised position debiasing (SOD) framework to mitigate position bias for large language models (LLMs)
Experiments on eight datasets and five tasks show that SOD consistently outperforms existing methods in mitigating three types of position biases.
arXiv Detail & Related papers (2024-01-02T14:12:41Z) - Feature-Level Debiased Natural Language Understanding [86.8751772146264]
Existing natural language understanding (NLU) models often rely on dataset biases to achieve high performance on specific datasets.
We propose debiasing contrastive learning (DCT) to mitigate biased latent features and neglect the dynamic nature of bias.
DCT outperforms state-of-the-art baselines on out-of-distribution datasets while maintaining in-distribution performance.
arXiv Detail & Related papers (2022-12-11T06:16:14Z) - Debiasing Neural Retrieval via In-batch Balancing Regularization [25.941718123899356]
We develop a differentiable textitnormed Pairwise Ranking Fairness (nPRF) and leverage the T-statistics on top of nPRF to improve fairness.
Our method with nPRF achieves significantly less bias with minimal degradation in ranking performance compared with the baseline.
arXiv Detail & Related papers (2022-05-18T22:57:15Z) - Tight Mutual Information Estimation With Contrastive Fenchel-Legendre
Optimization [69.07420650261649]
We introduce a novel, simple, and powerful contrastive MI estimator named as FLO.
Empirically, our FLO estimator overcomes the limitations of its predecessors and learns more efficiently.
The utility of FLO is verified using an extensive set of benchmarks, which also reveals the trade-offs in practical MI estimation.
arXiv Detail & Related papers (2021-07-02T15:20:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.