論文の概要: Supporting Student Decisions on Learning Recommendations: An LLM-Based
Chatbot with Knowledge Graph Contextualization for Conversational
Explainability and Mentoring
- arxiv url: http://arxiv.org/abs/2401.08517v1
- Date: Tue, 16 Jan 2024 17:31:35 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-18 18:47:28.522098
- Title: Supporting Student Decisions on Learning Recommendations: An LLM-Based
Chatbot with Knowledge Graph Contextualization for Conversational
Explainability and Mentoring
- Title(参考訳): 学習勧告に関する学生の判断を支援する:会話説明可能性と指導のための知識グラフ型チャットボット
- Authors: Hasan Abu-Rasheed, Mohamad Hussam Abdulsalam, Christian Weber, Madjid
Fathi
- Abstract要約: 本稿では,チャットボットを会話の仲介者として利用する手法を提案する。
グループチャットアプローチは、必要に応じて、あるいはチャットボットの予め定義されたタスクを超える場合に、学生と人間のメンターを結びつけるために開発された。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Student commitment towards a learning recommendation is not separable from
their understanding of the reasons it was recommended to them; and their
ability to modify it based on that understanding. Among explainability
approaches, chatbots offer the potential to engage the student in a
conversation, similar to a discussion with a peer or a mentor. The capabilities
of chatbots, however, are still not sufficient to replace a human mentor,
despite the advancements of generative AI (GenAI) and large language models
(LLM). Therefore, we propose an approach to utilize chatbots as mediators of
the conversation and sources of limited and controlled generation of
explanations, to harvest the potential of LLMs while reducing their potential
risks at the same time. The proposed LLM-based chatbot supports students in
understanding learning-paths recommendations. We use a knowledge graph (KG) as
a human-curated source of information, to regulate the LLM's output through
defining its prompt's context. A group chat approach is developed to connect
students with human mentors, either on demand or in cases that exceed the
chatbot's pre-defined tasks. We evaluate the chatbot with a user study, to
provide a proof-of-concept and highlight the potential requirements and
limitations of utilizing chatbots in conversational explainability.
- Abstract(参考訳): 学習推薦に対する学生のコミットメントは、それが推奨された理由やその理解に基づいてそれを修正できる能力についての理解とは分離できない。
説明可能性のアプローチの中で、チャットボットは、同僚やメンターとの議論と同様、会話で学生を巻き込む可能性を提供する。
しかし、生成型AI(GenAI)と大規模言語モデル(LLM)の進歩にもかかわらず、チャットボットの能力は人間のメンターを置き換えるには十分ではない。
そこで本稿では,チャットボットを会話の仲介者や限定的かつ制御された説明生成源として利用し,LLMの潜在能力を同時に獲得し,潜在的なリスクを低減させるアプローチを提案する。
提案するLLMベースのチャットボットは,学習パスレコメンデーションの理解を支援する。
我々は、知識グラフ(KG)を人間の情報ソースとして使用し、そのプロンプトのコンテキストを定義してLLMの出力を制御する。
グループチャットアプローチは、必要に応じて、あるいはチャットボットの予め定義されたタスクを超える場合に、学生と人間のメンターを結びつけるために開発された。
チャットボットをユーザ調査により評価し,概念実証を提供し,チャットボットを利用した会話説明可能性の潜在的要件と限界を強調する。
関連論文リスト
- Interactive Dialogue Agents via Reinforcement Learning on Hindsight Regenerations [58.65755268815283]
多くの実際の対話は対話的であり、つまりエージェントの発話が会話の相手に影響を与えるか、情報を引き出すか、意見を変えるかである。
この事実を利用して、既存の最適データを書き直し、拡張し、オフライン強化学習(RL)を介してトレーニングする。
実際の人間によるユーザ調査の結果、我々のアプローチは既存の最先端の対話エージェントを大きく上回っていることがわかった。
論文 参考訳(メタデータ) (2024-11-07T21:37:51Z) - Prompt Engineering a Schizophrenia Chatbot: Utilizing a Multi-Agent Approach for Enhanced Compliance with Prompt Instructions [0.0699049312989311]
統合失調症の患者は、しばしば認知障害を伴い、自分の状態について学ぶ能力を妨げることがある。
大規模言語モデル(LLM)は、トピックのメンタルヘルス情報をよりアクセシビリティとエンゲージメントを高める可能性を秘めているが、それらのブラックボックスの性質は倫理と安全に関する懸念を喚起する。
論文 参考訳(メタデータ) (2024-10-10T09:49:24Z) - Exploring Knowledge Tracing in Tutor-Student Dialogues [53.52699766206808]
本稿では,教師と学生の対話における知識追跡(KT)の最初の試みについて述べる。
そこで本研究では,対話の各ターンに係わる知識コンポーネントやスキルを同定する手法を提案する。
次に,得られたラベル付きデータに様々なKT手法を適用し,対話全体を通して学生の知識レベルを追跡する。
論文 参考訳(メタデータ) (2024-09-24T22:31:39Z) - LLM Roleplay: Simulating Human-Chatbot Interaction [52.03241266241294]
本研究では,人間とチャットボットの対話をシミュレートする多元多元対話を自動生成する,目標指向のペルソナに基づく手法を提案する。
本手法は,人間とチャットボットの対話を高い相違率でシミュレートすることができる。
論文 参考訳(メタデータ) (2024-07-04T14:49:46Z) - From Human-to-Human to Human-to-Bot Conversations in Software Engineering [3.1747517745997014]
AIとチャットボットの統合後,現代のソフトウェア開発において発生する会話のダイナミクスを理解することを目的としている。
既存の会話属性を人間やNLUベースのチャットボットとコンパイルし、ソフトウェア開発のコンテキストに適応する。
我々は人間同士の会話と人間同士の会話の類似点と相違点を示す。
LLM-chatbotsによる最近の会話スタイルは、人間との会話に取って代わるものではないと結論付けている。
論文 参考訳(メタデータ) (2024-05-21T12:04:55Z) - Think Before You Speak: Cultivating Communication Skills of Large Language Models via Inner Monologue [73.69510478736483]
大規模言語モデル(LLM)は、流動的で一貫性があり多様な応答を生成する。
しかし、それらは重要な能力、コミュニケーションスキルを欠いている。
本稿は,内的モノローグによるLLMのコミュニケーション能力向上を目的としている。
実験の結果,提案したCSIM戦略はバックボーンモデルを改善し,ベースラインよりも優れていた。
論文 参考訳(メタデータ) (2023-11-13T16:19:42Z) - Beyond Traditional Teaching: The Potential of Large Language Models and
Chatbots in Graduate Engineering Education [0.0]
本稿では,大規模言語モデル(LLM)とチャットボットを大学院工学教育に統合する可能性について検討する。
コース資料から質問バンクを作成し、正確で洞察に富んだ回答を提供するボットの能力を評価する。
数学的な問題解決やコード解釈のためにWolfram Alphaのような強力なプラグインが、ボットの機能を大幅に拡張できることを示す。
論文 参考訳(メタデータ) (2023-09-09T13:37:22Z) - Developing Effective Educational Chatbots with ChatGPT prompts: Insights
from Preliminary Tests in a Case Study on Social Media Literacy (with
appendix) [43.55994393060723]
ChatGPTのようなゼロショット学習機能を持つ言語学習モデルの最近の進歩は、教育チャットボットを開発する新たな可能性を示している。
本稿では,混合ターンチャットボットのインタラクションを可能にするシンプルなシステムを用いたケーススタディを提案する。
本稿では,ChatGPTが複数の相互接続型学習目標を追求し,文化,年齢,教育レベルなどのユーザ特性に教育活動を適応させ,多様な教育戦略や会話スタイルを活用できる能力について検討する。
論文 参考訳(メタデータ) (2023-06-18T22:23:18Z) - Few-Shot Bot: Prompt-Based Learning for Dialogue Systems [58.27337673451943]
ごく少数の例を使って会話を学ぶことは、会話型AIにおける大きな課題である。
現在の最良の会話モデルは、良いチャットシャッター(例:BlenderBot)またはゴール指向システム(例:MinTL)である。
グラデーションベースの微調整を必要とせず、学習の唯一の源としていくつかの例を用いるプロンプトベースの数ショット学習を提案する。
論文 参考訳(メタデータ) (2021-10-15T14:36:45Z) - Put Chatbot into Its Interlocutor's Shoes: New Framework to Learn
Chatbot Responding with Intention [55.77218465471519]
本稿では,チャットボットに人間のような意図を持つための革新的なフレームワークを提案する。
我々のフレームワークには、ガイドロボットと人間の役割を担うインターロケータモデルが含まれていた。
本フレームワークを3つの実験的なセットアップを用いて検討し,4つの異なる指標を用いた誘導ロボットの評価を行い,柔軟性と性能の利点を実証した。
論文 参考訳(メタデータ) (2021-03-30T15:24:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。