Risk-anticipatory autonomous driving strategies considering vehicles' weights, based on hierarchical deep reinforcement learning
- URL: http://arxiv.org/abs/2401.08661v2
- Date: Tue, 7 May 2024 07:07:59 GMT
- Title: Risk-anticipatory autonomous driving strategies considering vehicles' weights, based on hierarchical deep reinforcement learning
- Authors: Di Chen, Hao Li, Zhicheng Jin, Huizhao Tu, Meixin Zhu,
- Abstract summary: This study develops an autonomous driving strategy based on risk anticipation, considering the weights of surrounding vehicles.
A risk indicator integrating surrounding vehicles weights, based on the risk field theory, is proposed and incorporated into autonomous driving decisions.
An indicator, potential collision energy in conflicts, is newly proposed to evaluate the performance of the developed AV driving strategy.
- Score: 12.014977175887767
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Autonomous vehicles (AVs) have the potential to prevent accidents caused by drivers errors and reduce road traffic risks. Due to the nature of heavy vehicles, whose collisions cause more serious crashes, the weights of vehicles need to be considered when making driving strategies aimed at reducing the potential risks and their consequences in the context of autonomous driving. This study develops an autonomous driving strategy based on risk anticipation, considering the weights of surrounding vehicles and using hierarchical deep reinforcement learning. A risk indicator integrating surrounding vehicles weights, based on the risk field theory, is proposed and incorporated into autonomous driving decisions. A hybrid action space is designed to allow for left lane changes, right lane changes and car-following, which enables AVs to act more freely and realistically whenever possible. To solve the above hybrid decision-making problem, a hierarchical proximal policy optimization (HPPO) algorithm with an attention mechanism (AT-HPPO) is developed, providing great advantages in maintaining stable performance with high robustness and generalization. An indicator, potential collision energy in conflicts (PCEC), is newly proposed to evaluate the performance of the developed AV driving strategy from the perspective of the consequences of potential accidents. The performance evaluation results in simulation and dataset demonstrate that our model provides driving strategies that reduce both the likelihood and consequences of potential accidents, at the same time maintaining driving efficiency. The developed method is especially meaningful for AVs driving on highways, where heavy vehicles make up a high proportion of the traffic.
Related papers
- A Conflicts-free, Speed-lossless KAN-based Reinforcement Learning Decision System for Interactive Driving in Roundabouts [17.434924472015812]
This paper introduces a learning-based algorithm tailored to foster safe and efficient driving behaviors in roundabouts.
The proposed algorithm employs a deep Q-learning network to learn safe and efficient driving strategies in complex multi-vehicle roundabouts.
The results show that our proposed system consistently achieves safe and efficient driving whilst maintaining a stable training process.
arXiv Detail & Related papers (2024-08-15T16:10:25Z) - RACER: Epistemic Risk-Sensitive RL Enables Fast Driving with Fewer Crashes [57.319845580050924]
We propose a reinforcement learning framework that combines risk-sensitive control with an adaptive action space curriculum.
We show that our algorithm is capable of learning high-speed policies for a real-world off-road driving task.
arXiv Detail & Related papers (2024-05-07T23:32:36Z) - Deep Reinforcement Learning for Advanced Longitudinal Control and Collision Avoidance in High-Risk Driving Scenarios [0.0]
This study introduces a novel deep reinforcement learning based algorithm for longitudinal control and collision avoidance.
Its implementation in simulated high risk scenarios, which involve emergency braking in dense traffic where traditional systems typically fail, has demonstrated the algorithm ability to prevent potential pile up collisions.
arXiv Detail & Related papers (2024-04-29T19:58:34Z) - RACER: Rational Artificial Intelligence Car-following-model Enhanced by
Reality [51.244807332133696]
This paper introduces RACER, a cutting-edge deep learning car-following model to predict Adaptive Cruise Control (ACC) driving behavior.
Unlike conventional models, RACER effectively integrates Rational Driving Constraints (RDCs), crucial tenets of actual driving.
RACER excels across key metrics, such as acceleration, velocity, and spacing, registering zero violations.
arXiv Detail & Related papers (2023-12-12T06:21:30Z) - A Counterfactual Safety Margin Perspective on the Scoring of Autonomous
Vehicles' Riskiness [52.27309191283943]
This paper presents a data-driven framework for assessing the risk of different AVs' behaviors.
We propose the notion of counterfactual safety margin, which represents the minimum deviation from nominal behavior that could cause a collision.
arXiv Detail & Related papers (2023-08-02T09:48:08Z) - RCP-RF: A Comprehensive Road-car-pedestrian Risk Management Framework
based on Driving Risk Potential Field [1.625213292350038]
We propose a comprehensive driving risk management framework named RCP-RF based on potential field theory under Connected and Automated Vehicles (CAV) environment.
Different from existing algorithms, the motion tendency between ego and obstacle cars and the pedestrian factor are legitimately considered in the proposed framework.
Empirical studies validate the superiority of our proposed framework against state-of-the-art methods on real-world dataset NGSIM and real AV platform.
arXiv Detail & Related papers (2023-05-04T01:54:37Z) - Studying the Impact of Semi-Cooperative Drivers on Overall Highway Flow [76.38515853201116]
Semi-cooperative behaviors are intrinsic properties of human drivers and should be considered for autonomous driving.
New autonomous planners can consider the social value orientation (SVO) of human drivers to generate socially-compliant trajectories.
We present study of implicit semi-cooperative driving where agents deploy a game-theoretic version of iterative best response.
arXiv Detail & Related papers (2023-04-23T16:01:36Z) - Unified Automatic Control of Vehicular Systems with Reinforcement
Learning [64.63619662693068]
This article contributes a streamlined methodology for vehicular microsimulation.
It discovers high performance control strategies with minimal manual design.
The study reveals numerous emergent behaviors resembling wave mitigation, traffic signaling, and ramp metering.
arXiv Detail & Related papers (2022-07-30T16:23:45Z) - Don't Get Yourself into Trouble! Risk-aware Decision-Making for
Autonomous Vehicles [4.94950858749529]
We show that risk could be characterized by two components: 1) the probability of an undesirable outcome and 2) an estimate of how undesirable the outcome is (loss)
We developed a risk-based decision-making framework for the autonomous vehicle that integrates the high-level risk-based path planning with the reinforcement learning-based low-level control.
This work can improve safety by allowing an autonomous vehicle to one day avoid and react to risky situations.
arXiv Detail & Related papers (2021-06-08T18:24:02Z) - Driving-Policy Adaptive Safeguard for Autonomous Vehicles Using
Reinforcement Learning [19.71676985220504]
This paper proposes a driving-policy adaptive safeguard (DPAS) design, including a collision avoidance strategy and an activation function.
The driving-policy adaptive activation function should dynamically assess current driving policy risk and kick in when an urgent threat is detected.
The results are calibrated by naturalistic driving data and show that the proposed safeguard reduces the collision rate significantly without introducing more interventions.
arXiv Detail & Related papers (2020-12-02T08:01:53Z) - Can Autonomous Vehicles Identify, Recover From, and Adapt to
Distribution Shifts? [104.04999499189402]
Out-of-training-distribution (OOD) scenarios are a common challenge of learning agents at deployment.
We propose an uncertainty-aware planning method, called emphrobust imitative planning (RIP)
Our method can detect and recover from some distribution shifts, reducing the overconfident and catastrophic extrapolations in OOD scenes.
We introduce an autonomous car novel-scene benchmark, textttCARNOVEL, to evaluate the robustness of driving agents to a suite of tasks with distribution shifts.
arXiv Detail & Related papers (2020-06-26T11:07:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.