論文の概要: HuixiangDou: Overcoming Group Chat Scenarios with LLM-based Technical Assistance
- arxiv url: http://arxiv.org/abs/2401.08772v2
- Date: Fri, 12 Apr 2024 10:50:30 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-15 19:16:06.758363
- Title: HuixiangDou: Overcoming Group Chat Scenarios with LLM-based Technical Assistance
- Title(参考訳): HuixiangDou: LLMベースの技術支援によるグループチャットシナリオの克服
- Authors: Huanjun Kong, Songyang Zhang, Jiaying Li, Min Xiao, Jun Xu, Kai Chen,
- Abstract要約: 我々はLarge Language Models (LLM)を利用した技術アシスタントHixiangDouを紹介する。
このシステムは、オープンソースのアルゴリズムプロジェクトに関連する質問に対する洞察に富んだ回答を提供することによって、アルゴリズム開発者を支援するように設計されている。
WeChatやLarkといったインスタントメッセージング(IM)ツールのグループチャットへのこのアシスタントの統合についても検討する。
- 参考スコア(独自算出の注目度): 33.00983256174294
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In this work, we present HuixiangDou, a technical assistant powered by Large Language Models (LLM). This system is designed to assist algorithm developers by providing insightful responses to questions related to open-source algorithm projects, such as computer vision and deep learning projects from OpenMMLab. We further explore the integration of this assistant into the group chats of instant messaging (IM) tools such as WeChat and Lark. Through several iterative improvements and trials, we have developed a sophisticated technical chat assistant capable of effectively answering users' technical questions without causing message flooding. This paper's contributions include: 1) Designing an algorithm pipeline specifically for group chat scenarios; 2) Verifying the reliable performance of text2vec in task rejection; 3) Identifying three critical requirements for LLMs in technical-assistant-like products, namely scoring ability, In-Context Learning (ICL), and Long Context. We have made the source code, android app and web service available at Github (https://github.com/internlm/huixiangdou), OpenXLab (https://openxlab.org.cn/apps/detail/tpoisonooo/huixiangdou-web) and YouTube (https://youtu.be/ylXrT-Tei-Y) to aid in future research and application. HuixiangDou is applicable to any group chat within IM tools.
- Abstract(参考訳): 本稿では,Large Language Models (LLM) を利用した技術アシスタントであるHixiangDouを紹介する。
このシステムは,コンピュータビジョンやOpenMMLabのディープラーニングプロジェクトといった,オープンソースのアルゴリズムプロジェクトに関連する質問に対する洞察に富んだ回答を提供することによって,アルゴリズム開発者の支援を目的としている。
WeChatやLarkといったインスタントメッセージング(IM)ツールのグループチャットへのこのアシスタントの統合についても検討する。
いくつかの反復的な改善と試行を通じて,メッセージの洪水を引き起こすことなくユーザの技術的な質問に効果的に答えられる高度な技術チャットアシスタントを開発した。
本論文の貢献は以下のとおりである。
1)グループチャットシナリオに特化したアルゴリズムパイプラインの設計
2 タスク拒絶におけるtext2vecの信頼性の検証
3)技術援助的な製品,すなわちスコアリング能力,インコンテキスト学習(ICL),ロングコンテキスト(Long Context)の3つの重要な要件を特定する。
私たちはGithub(https://github.com/internlm/huixiangdou)、OpenXLab(https://openxlab.org.cn/apps/detail/tpoisonooo/huixiangdou-web)、YouTube(https://youtu.be/ylXrT-Tei-Y)でソースコード、アンドロイドアプリ、Webサービスを利用可能にしました。
HuixiangDouはIMツール内の任意のグループチャットに適用できる。
関連論文リスト
- LLMs are Imperfect, Then What? An Empirical Study on LLM Failures in Software Engineering [38.20696656193963]
非自明なソフトウェアエンジニアリングタスクにおいて,ChatGPTをコーディングアシスタントとして使用した22名の参加者を対象に,観察的研究を行った。
そこで我々は,ChatGPTが失敗した事例,その根本原因,およびユーザが使用する緩和ソリューションを特定した。
論文 参考訳(メタデータ) (2024-11-15T03:29:41Z) - One Step at a Time: Combining LLMs and Static Analysis to Generate Next-Step Hints for Programming Tasks [5.069252018619403]
学生はプログラミングを学ぶとき、特にオンラインでやらなければならないとき、プログラミングの問題を解決するのに苦労することが多い。
このヘルプは次のステップのヒント生成として提供され、生徒が次にすべき小さなステップを教えて、正しいソリューションを得る。
本稿では,プログラムタスクのためのテキストヒントとコードヒントの両方を提供する新しいシステムを提案する。
論文 参考訳(メタデータ) (2024-10-11T21:41:57Z) - Beyond Code Generation: An Observational Study of ChatGPT Usage in Software Engineering Practice [3.072802875195726]
我々は、ChatGPTを1週間の業務で使用している24人のプロのソフトウェアエンジニアについて、観察的研究を行った。
ChatGPTが使えるソフトウェアアーティファクト(例えばコード)を生成することを期待するのではなく、実践者はChatGPTを使ってタスクの解決方法やトピックについてより抽象的な言葉で学ぶことが多い。
論文 参考訳(メタデータ) (2024-04-23T10:34:16Z) - Lessons from Building StackSpot AI: A Contextualized AI Coding Assistant [2.268415020650315]
大規模言語モデル上に構築された新しいタイプのツールが登場しつつある。
これらのツールは、微調整やコンテキスト情報によるユーザプロンプトの強化といった手法を用いて、欠点を軽減することを目的としている。
論文 参考訳(メタデータ) (2023-11-30T10:51:26Z) - ChatDev: Communicative Agents for Software Development [84.90400377131962]
ChatDevはチャットを利用したソフトウェア開発フレームワークで、特別なエージェントがコミュニケーション方法についてガイドされる。
これらのエージェントは、統一された言語ベースのコミュニケーションを通じて、設計、コーディング、テストフェーズに積極的に貢献する。
論文 参考訳(メタデータ) (2023-07-16T02:11:34Z) - LAMM: Language-Assisted Multi-Modal Instruction-Tuning Dataset,
Framework, and Benchmark [81.42376626294812]
本稿では,Language-Assisted Multi-Modalインストラクションチューニングデータセット,フレームワーク,ベンチマークを提案する。
我々の目標は、MLLMのトレーニングと評価のための成長するエコシステムとしてLAMMを確立することです。
本稿では,2次元および3次元視覚のための広範囲な視覚タスクをカバーする包括的データセットとベンチマークを提案する。
論文 参考訳(メタデータ) (2023-06-11T14:01:17Z) - ChatCoT: Tool-Augmented Chain-of-Thought Reasoning on Chat-based Large
Language Models [125.7209927536255]
チャットベースのLLMのためのツール拡張チェーン推論フレームワークChatCoTを提案する。
ChatCoTでは、チャットを通じてより自然な方法でツールを活用するために、マルチターン会話として思考の連鎖(CoT)推論をモデル化します。
提案手法は,チャットベースのLLMのマルチターン会話能力を効果的に活用し,思考連鎖とツール操作を統一的に統合する。
論文 参考訳(メタデータ) (2023-05-23T17:54:33Z) - Is ChatGPT the Ultimate Programming Assistant -- How far is it? [11.943927095071105]
ChatGPTは非常に注目されており、ソースコードを議論するためのボットとして使用できる。
完全自動プログラミングアシスタントとしてのChatGPTの可能性について実証的研究を行った。
論文 参考訳(メタデータ) (2023-04-24T09:20:13Z) - A Multitask, Multilingual, Multimodal Evaluation of ChatGPT on
Reasoning, Hallucination, and Interactivity [79.12003701981092]
8種類の共通NLPアプリケーションタスクをカバーする23のデータセットを用いてChatGPTの広範な技術的評価を行う。
これらのデータセットと、新たに設計されたマルチモーダルデータセットに基づいて、ChatGPTのマルチタスク、マルチリンガル、マルチモーダルの側面を評価する。
ChatGPTの精度は平均63.41%で、論理的推論、非テキスト的推論、コモンセンス推論の10の異なる推論カテゴリで正確である。
論文 参考訳(メタデータ) (2023-02-08T12:35:34Z) - TegTok: Augmenting Text Generation via Task-specific and Open-world
Knowledge [83.55215993730326]
本稿では,タスク固有およびオープンワールド知識(TegTok)によるTExt生成の統一化を提案する。
本モデルでは,2種類の知識ソースからの知識エントリを高密度検索により選択し,それぞれ入力エンコーディングと出力デコーディングの段階に注入する。
論文 参考訳(メタデータ) (2022-03-16T10:37:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。