Semi-Supervised Learning Approach for Efficient Resource Allocation with Network Slicing in O-RAN
- URL: http://arxiv.org/abs/2401.08861v2
- Date: Tue, 24 Sep 2024 19:37:20 GMT
- Title: Semi-Supervised Learning Approach for Efficient Resource Allocation with Network Slicing in O-RAN
- Authors: Salar Nouri, Mojdeh Karbalaee Motalleb, Vahid Shah-Mansouri, Seyed Pooya Shariatpanahi,
- Abstract summary: This paper introduces an innovative approach to the resource allocation problem.
It aims to coordinate multiple independent x-applications (xAPPs) for network slicing and resource allocation in the Open Radio Access Network (O-RAN)
- Score: 5.1435595246496595
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper introduces an innovative approach to the resource allocation problem, aiming to coordinate multiple independent x-applications (xAPPs) for network slicing and resource allocation in the Open Radio Access Network (O-RAN). Our approach maximizes the weighted throughput among user equipment (UE) and allocates physical resource blocks (PRBs). We prioritize two service types: enhanced Mobile Broadband and Ultra-Reliable Low-Latency Communication. Two xAPPs have been designed to achieve this: a power control xAPP for each UE and a PRB allocation xAPP. The method consists of a two-part training phase. The first part uses supervised learning with a Variational Autoencoder trained to regress the power transmission, UE association, and PRB allocation decisions, and the second part uses unsupervised learning with a contrastive loss approach to improve the generalization and robustness of the model. We evaluate the performance by comparing its results to those obtained from an exhaustive search and deep Q-network algorithms and reporting performance metrics for the regression task. The results demonstrate the superior efficiency of this approach in different scenarios among the service types, reaffirming its status as a more efficient and effective solution for network slicing problems compared to state-of-the-art methods. This innovative approach not only sets our research apart but also paves the way for exciting future advancements in resource allocation in O-RAN.
Related papers
- Edge-Cloud Collaborative Computing on Distributed Intelligence and Model Optimization: A Survey [59.52058740470727]
Edge-cloud collaborative computing (ECCC) has emerged as a pivotal paradigm for addressing the computational demands of modern intelligent applications.<n>Recent advancements in AI, particularly deep learning and large language models (LLMs), have dramatically enhanced the capabilities of these distributed systems.<n>This survey provides a structured tutorial on fundamental architectures, enabling technologies, and emerging applications.
arXiv Detail & Related papers (2025-05-03T13:55:38Z) - Generative Diffusion Models for Resource Allocation in Wireless Networks [77.36145730415045]
We train a policy to imitate an expert and generate new samples from the optimal distribution.<n>We achieve near-optimal performance through the sequential execution of the generated samples.<n>We present numerical results in a case study of power control.
arXiv Detail & Related papers (2025-04-28T21:44:31Z) - Learning for Cross-Layer Resource Allocation in MEC-Aided Cell-Free Networks [71.30914500714262]
Cross-layer resource allocation over mobile edge computing (MEC)-aided cell-free networks can sufficiently exploit the transmitting and computing resources to promote the data rate.
Joint subcarrier allocation and beamforming optimization are investigated for the MEC-aided cell-free network from the perspective of deep learning.
arXiv Detail & Related papers (2024-12-21T10:18:55Z) - Cluster-Based Multi-Agent Task Scheduling for Space-Air-Ground Integrated Networks [60.085771314013044]
Low-altitude economy holds significant potential for development in areas such as communication and sensing.<n>We propose a Clustering-based Multi-agent Deep Deterministic Policy Gradient (CMADDPG) algorithm to address the multi-UAV cooperative task scheduling challenges in SAGIN.
arXiv Detail & Related papers (2024-12-14T06:17:33Z) - A Local Information Aggregation based Multi-Agent Reinforcement Learning for Robot Swarm Dynamic Task Allocation [4.144893164317513]
We introduce a novel framework using a decentralized partially observable Markov decision process (Dec_POMDP)<n>At the core of our methodology is the Local Information Aggregation Multi-Agent Deep Deterministic Policy Gradient (LIA_MADDPG) algorithm.<n>Our empirical evaluations show that the LIA module can be seamlessly integrated into various CTDE-based MARL methods.
arXiv Detail & Related papers (2024-11-29T07:53:05Z) - Two-Timescale Model Caching and Resource Allocation for Edge-Enabled AI-Generated Content Services [55.0337199834612]
Generative AI (GenAI) has emerged as a transformative technology, enabling customized and personalized AI-generated content (AIGC) services.
These services require executing GenAI models with billions of parameters, posing significant obstacles to resource-limited wireless edge.
We introduce the formulation of joint model caching and resource allocation for AIGC services to balance a trade-off between AIGC quality and latency metrics.
arXiv Detail & Related papers (2024-11-03T07:01:13Z) - Meta Reinforcement Learning Approach for Adaptive Resource Optimization in O-RAN [6.326120268549892]
Open Radio Access Network (O-RAN) addresses the variable demands of modern networks with unprecedented efficiency and adaptability.
This paper proposes a novel Meta Deep Reinforcement Learning (Meta-DRL) strategy, inspired by Model-Agnostic Meta-Learning (MAML) to advance resource block and downlink power allocation in O-RAN.
arXiv Detail & Related papers (2024-09-30T23:04:30Z) - Multi-Agent RL-Based Industrial AIGC Service Offloading over Wireless Edge Networks [19.518346220904732]
We propose a generative model-driven industrial AIGC collaborative edge learning framework.
This framework aims to facilitate efficient few-shot learning by leveraging realistic sample synthesis and edge-based optimization capabilities.
arXiv Detail & Related papers (2024-05-05T15:31:47Z) - Intelligent Hybrid Resource Allocation in MEC-assisted RAN Slicing Network [72.2456220035229]
We aim to maximize the SSR for heterogeneous service demands in the cooperative MEC-assisted RAN slicing system.
We propose a recurrent graph reinforcement learning (RGRL) algorithm to intelligently learn the optimal hybrid RA policy.
arXiv Detail & Related papers (2024-05-02T01:36:13Z) - Machine Learning Insides OptVerse AI Solver: Design Principles and
Applications [74.67495900436728]
We present a comprehensive study on the integration of machine learning (ML) techniques into Huawei Cloud's OptVerse AI solver.
We showcase our methods for generating complex SAT and MILP instances utilizing generative models that mirror multifaceted structures of real-world problem.
We detail the incorporation of state-of-the-art parameter tuning algorithms which markedly elevate solver performance.
arXiv Detail & Related papers (2024-01-11T15:02:15Z) - Orchestration of Emulator Assisted Mobile Edge Tuning for AI Foundation
Models: A Multi-Agent Deep Reinforcement Learning Approach [10.47302625959368]
We present a groundbreaking paradigm integrating Mobile Edge Computing with foundation models, specifically designed to enhance local task performance on user equipment (UE)
Central to our approach is the innovative Emulator-Adapter architecture, segmenting the foundation model into two cohesive modules.
We introduce an advanced resource allocation mechanism that is fine-tuned to the needs of the Emulator-Adapter structure in decentralized settings.
arXiv Detail & Related papers (2023-10-26T15:47:51Z) - Federated Reinforcement Learning for Resource Allocation in V2X Networks [46.6256432514037]
Resource allocation significantly impacts the performance of vehicle-to-everything (V2X) networks.
Most existing algorithms for resource allocation are based on optimization or machine learning.
In this paper, we explore resource allocation in a V2X network under the framework of federated reinforcement learning.
arXiv Detail & Related papers (2023-10-15T15:26:54Z) - Multi-Agent Reinforcement Learning for Network Routing in Integrated
Access Backhaul Networks [0.0]
We aim to maximize packet arrival ratio while minimizing their latency in IAB networks.
To solve this problem, we develop a multi-agent partially observed Markov decision process (POMD)
We show that A2C outperforms other reinforcement learning algorithms, leading to increased network efficiency and reduced selfish agent behavior.
arXiv Detail & Related papers (2023-05-12T13:03:26Z) - Graph Reinforcement Learning for Radio Resource Allocation [13.290246410488727]
We resort to graph reinforcement learning for exploiting two kinds of relational priors inherent in many problems in wireless communications.
To design graph reinforcement learning framework systematically, we first conceive a method to transform state matrix into state graph.
We then propose a general method for graph neural networks to satisfy desirable permutation properties.
arXiv Detail & Related papers (2022-03-08T08:02:54Z) - A Heuristically Assisted Deep Reinforcement Learning Approach for
Network Slice Placement [0.7885276250519428]
We introduce a hybrid placement solution based on Deep Reinforcement Learning (DRL) and a dedicated optimization based on the Power of Two Choices principle.
The proposed Heuristically-Assisted DRL (HA-DRL) allows to accelerate the learning process and gain in resource usage when compared against other state-of-the-art approaches.
arXiv Detail & Related papers (2021-05-14T10:04:17Z) - Reconfigurable Intelligent Surface Assisted Mobile Edge Computing with
Heterogeneous Learning Tasks [53.1636151439562]
Mobile edge computing (MEC) provides a natural platform for AI applications.
We present an infrastructure to perform machine learning tasks at an MEC with the assistance of a reconfigurable intelligent surface (RIS)
Specifically, we minimize the learning error of all participating users by jointly optimizing transmit power of mobile users, beamforming vectors of the base station, and the phase-shift matrix of the RIS.
arXiv Detail & Related papers (2020-12-25T07:08:50Z) - Deep Learning-based Resource Allocation For Device-to-Device
Communication [66.74874646973593]
We propose a framework for the optimization of the resource allocation in multi-channel cellular systems with device-to-device (D2D) communication.
A deep learning (DL) framework is proposed, where the optimal resource allocation strategy for arbitrary channel conditions is approximated by deep neural network (DNN) models.
Our simulation results confirm that near-optimal performance can be attained with low time, which underlines the real-time capability of the proposed scheme.
arXiv Detail & Related papers (2020-11-25T14:19:23Z) - Toward Multiple Federated Learning Services Resource Sharing in Mobile
Edge Networks [88.15736037284408]
We study a new model of multiple federated learning services at the multi-access edge computing server.
We propose a joint resource optimization and hyper-learning rate control problem, namely MS-FEDL.
Our simulation results demonstrate the convergence performance of our proposed algorithms.
arXiv Detail & Related papers (2020-11-25T01:29:41Z) - Adaptive Serverless Learning [114.36410688552579]
We propose a novel adaptive decentralized training approach, which can compute the learning rate from data dynamically.
Our theoretical results reveal that the proposed algorithm can achieve linear speedup with respect to the number of workers.
To reduce the communication-efficient overhead, we further propose a communication-efficient adaptive decentralized training approach.
arXiv Detail & Related papers (2020-08-24T13:23:02Z) - Resource Allocation via Model-Free Deep Learning in Free Space Optical
Communications [119.81868223344173]
The paper investigates the general problem of resource allocation for mitigating channel fading effects in Free Space Optical (FSO) communications.
Under this framework, we propose two algorithms that solve FSO resource allocation problems.
arXiv Detail & Related papers (2020-07-27T17:38:51Z) - Combining Federated and Active Learning for Communication-efficient
Distributed Failure Prediction in Aeronautics [0.0]
We present a new centralized distributed learning algorithm that relies on the learning paradigms of Active Learning and Federated Learning.
We evaluate this method on a public benchmark and show that its performances in terms of precision are very close to state-of-the-art performance level of non-distributed learning.
arXiv Detail & Related papers (2020-01-21T13:17:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.