Semi-Supervised Learning Approach for Efficient Resource Allocation with Network Slicing in O-RAN
- URL: http://arxiv.org/abs/2401.08861v2
- Date: Tue, 24 Sep 2024 19:37:20 GMT
- Title: Semi-Supervised Learning Approach for Efficient Resource Allocation with Network Slicing in O-RAN
- Authors: Salar Nouri, Mojdeh Karbalaee Motalleb, Vahid Shah-Mansouri, Seyed Pooya Shariatpanahi,
- Abstract summary: This paper introduces an innovative approach to the resource allocation problem.
It aims to coordinate multiple independent x-applications (xAPPs) for network slicing and resource allocation in the Open Radio Access Network (O-RAN)
- Score: 5.1435595246496595
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper introduces an innovative approach to the resource allocation problem, aiming to coordinate multiple independent x-applications (xAPPs) for network slicing and resource allocation in the Open Radio Access Network (O-RAN). Our approach maximizes the weighted throughput among user equipment (UE) and allocates physical resource blocks (PRBs). We prioritize two service types: enhanced Mobile Broadband and Ultra-Reliable Low-Latency Communication. Two xAPPs have been designed to achieve this: a power control xAPP for each UE and a PRB allocation xAPP. The method consists of a two-part training phase. The first part uses supervised learning with a Variational Autoencoder trained to regress the power transmission, UE association, and PRB allocation decisions, and the second part uses unsupervised learning with a contrastive loss approach to improve the generalization and robustness of the model. We evaluate the performance by comparing its results to those obtained from an exhaustive search and deep Q-network algorithms and reporting performance metrics for the regression task. The results demonstrate the superior efficiency of this approach in different scenarios among the service types, reaffirming its status as a more efficient and effective solution for network slicing problems compared to state-of-the-art methods. This innovative approach not only sets our research apart but also paves the way for exciting future advancements in resource allocation in O-RAN.
Related papers
- Two-Timescale Model Caching and Resource Allocation for Edge-Enabled AI-Generated Content Services [55.0337199834612]
Generative AI (GenAI) has emerged as a transformative technology, enabling customized and personalized AI-generated content (AIGC) services.
These services require executing GenAI models with billions of parameters, posing significant obstacles to resource-limited wireless edge.
We introduce the formulation of joint model caching and resource allocation for AIGC services to balance a trade-off between AIGC quality and latency metrics.
arXiv Detail & Related papers (2024-11-03T07:01:13Z) - Federated Reinforcement Learning for Resource Allocation in V2X Networks [46.6256432514037]
Resource allocation significantly impacts the performance of vehicle-to-everything (V2X) networks.
Most existing algorithms for resource allocation are based on optimization or machine learning.
In this paper, we explore resource allocation in a V2X network under the framework of federated reinforcement learning.
arXiv Detail & Related papers (2023-10-15T15:26:54Z) - Multi-Agent Reinforcement Learning for Network Routing in Integrated
Access Backhaul Networks [0.0]
We aim to maximize packet arrival ratio while minimizing their latency in IAB networks.
To solve this problem, we develop a multi-agent partially observed Markov decision process (POMD)
We show that A2C outperforms other reinforcement learning algorithms, leading to increased network efficiency and reduced selfish agent behavior.
arXiv Detail & Related papers (2023-05-12T13:03:26Z) - Graph Reinforcement Learning for Radio Resource Allocation [13.290246410488727]
We resort to graph reinforcement learning for exploiting two kinds of relational priors inherent in many problems in wireless communications.
To design graph reinforcement learning framework systematically, we first conceive a method to transform state matrix into state graph.
We then propose a general method for graph neural networks to satisfy desirable permutation properties.
arXiv Detail & Related papers (2022-03-08T08:02:54Z) - A Heuristically Assisted Deep Reinforcement Learning Approach for
Network Slice Placement [0.7885276250519428]
We introduce a hybrid placement solution based on Deep Reinforcement Learning (DRL) and a dedicated optimization based on the Power of Two Choices principle.
The proposed Heuristically-Assisted DRL (HA-DRL) allows to accelerate the learning process and gain in resource usage when compared against other state-of-the-art approaches.
arXiv Detail & Related papers (2021-05-14T10:04:17Z) - Deep Learning-based Resource Allocation For Device-to-Device
Communication [66.74874646973593]
We propose a framework for the optimization of the resource allocation in multi-channel cellular systems with device-to-device (D2D) communication.
A deep learning (DL) framework is proposed, where the optimal resource allocation strategy for arbitrary channel conditions is approximated by deep neural network (DNN) models.
Our simulation results confirm that near-optimal performance can be attained with low time, which underlines the real-time capability of the proposed scheme.
arXiv Detail & Related papers (2020-11-25T14:19:23Z) - Toward Multiple Federated Learning Services Resource Sharing in Mobile
Edge Networks [88.15736037284408]
We study a new model of multiple federated learning services at the multi-access edge computing server.
We propose a joint resource optimization and hyper-learning rate control problem, namely MS-FEDL.
Our simulation results demonstrate the convergence performance of our proposed algorithms.
arXiv Detail & Related papers (2020-11-25T01:29:41Z) - Adaptive Serverless Learning [114.36410688552579]
We propose a novel adaptive decentralized training approach, which can compute the learning rate from data dynamically.
Our theoretical results reveal that the proposed algorithm can achieve linear speedup with respect to the number of workers.
To reduce the communication-efficient overhead, we further propose a communication-efficient adaptive decentralized training approach.
arXiv Detail & Related papers (2020-08-24T13:23:02Z) - Resource Allocation via Model-Free Deep Learning in Free Space Optical
Communications [119.81868223344173]
The paper investigates the general problem of resource allocation for mitigating channel fading effects in Free Space Optical (FSO) communications.
Under this framework, we propose two algorithms that solve FSO resource allocation problems.
arXiv Detail & Related papers (2020-07-27T17:38:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.