MambaTab: A Plug-and-Play Model for Learning Tabular Data
- URL: http://arxiv.org/abs/2401.08867v2
- Date: Mon, 24 Jun 2024 19:58:06 GMT
- Title: MambaTab: A Plug-and-Play Model for Learning Tabular Data
- Authors: Md Atik Ahamed, Qiang Cheng,
- Abstract summary: This work introduces an innovative approach based on a structured state-space model (SSM), MambaTab, for tabular data.
MambaTab delivers superior performance while requiring significantly fewer parameters, as empirically validated on diverse benchmark datasets.
- Score: 13.110156202816112
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite the prevalence of images and texts in machine learning, tabular data remains widely used across various domains. Existing deep learning models, such as convolutional neural networks and transformers, perform well however demand extensive preprocessing and tuning limiting accessibility and scalability. This work introduces an innovative approach based on a structured state-space model (SSM), MambaTab, for tabular data. SSMs have strong capabilities for efficiently extracting effective representations from data with long-range dependencies. MambaTab leverages Mamba, an emerging SSM variant, for end-to-end supervised learning on tables. Compared to state-of-the-art baselines, MambaTab delivers superior performance while requiring significantly fewer parameters, as empirically validated on diverse benchmark datasets. MambaTab's efficiency, scalability, generalizability, and predictive gains signify it as a lightweight, "plug-and-play" solution for diverse tabular data with promise for enabling wider practical applications.
Related papers
- Scalable In-Context Learning on Tabular Data via Retrieval-Augmented Large Language Models [15.603556124006479]
We propose retrieval-augmented language models for scalable TabICL.
Our approach incorporates a customized retrieval module, combined with retrieval-guided instruction-tuning for LLMs.
This enables LLMs to effectively leverage larger datasets, achieving significantly improved performance across 69 widely recognized datasets.
arXiv Detail & Related papers (2025-02-05T13:16:41Z) - MAmmoTH-VL: Eliciting Multimodal Reasoning with Instruction Tuning at Scale [66.73529246309033]
multimodal large language models (MLLMs) have shown significant potential in a broad range of multimodal tasks.
Existing instruction-tuning datasets only provide phrase-level answers without any intermediate rationales.
We introduce a scalable and cost-effective method to construct a large-scale multimodal instruction-tuning dataset with rich intermediate rationales.
arXiv Detail & Related papers (2024-12-06T18:14:24Z) - TabM: Advancing Tabular Deep Learning with Parameter-Efficient Ensembling [28.37672139176765]
New model TabM relies on ensembling, where one TabM efficiently imitates an ensemble ofs and produces multiple predictions per object.
In TabM, the underlying implicits are trained simultaneously, and (by default) share most of their parameters, which results in significantly better performance and efficiency.
arXiv Detail & Related papers (2024-10-31T17:58:41Z) - A Survey on Deep Tabular Learning [0.0]
Tabular data presents unique challenges for deep learning due to its heterogeneous nature and lack of spatial structure.
This survey reviews the evolution of deep learning models for Tabular data, from early fully connected networks (FCNs) to advanced architectures like TabNet, SAINT, TabTranSELU, and MambaNet.
arXiv Detail & Related papers (2024-10-15T20:08:08Z) - Large Language Models Can Automatically Engineer Features for Few-Shot Tabular Learning [35.03338699349037]
We propose a novel in-context learning framework, FeatLLM, which employs Large Language Models as feature engineers.
FeatLLM generates high-quality rules, significantly (10% on average) outperforming alternatives such as TabLLM and STUNT.
arXiv Detail & Related papers (2024-04-15T06:26:08Z) - Making Pre-trained Language Models Great on Tabular Prediction [50.70574370855663]
The transferability of deep neural networks (DNNs) has made significant progress in image and language processing.
We present TP-BERTa, a specifically pre-trained LM for tabular data prediction.
A novel relative magnitude tokenization converts scalar numerical feature values to finely discrete, high-dimensional tokens, and an intra-feature attention approach integrates feature values with the corresponding feature names.
arXiv Detail & Related papers (2024-03-04T08:38:56Z) - TAP4LLM: Table Provider on Sampling, Augmenting, and Packing Semi-structured Data for Large Language Model Reasoning [55.33939289989238]
We propose TAP4LLM as a versatile pre-processor suite for leveraging large language models (LLMs) in table-based tasks effectively.
It covers several distinct components: (1) table sampling to decompose large tables into manageable sub-tables based on query semantics, (2) table augmentation to enhance tables with additional knowledge from external sources or models, and (3) table packing & serialization to convert tables into various formats suitable for LLMs' understanding.
arXiv Detail & Related papers (2023-12-14T15:37:04Z) - STUNT: Few-shot Tabular Learning with Self-generated Tasks from
Unlabeled Tables [64.0903766169603]
We propose a framework for few-shot semi-supervised learning, coined Self-generated Tasks from UNlabeled Tables (STUNT)
Our key idea is to self-generate diverse few-shot tasks by treating randomly chosen columns as a target label.
We then employ a meta-learning scheme to learn generalizable knowledge with the constructed tasks.
arXiv Detail & Related papers (2023-03-02T02:37:54Z) - Learning Multimodal Data Augmentation in Feature Space [65.54623807628536]
LeMDA is an easy-to-use method that automatically learns to jointly augment multimodal data in feature space.
We show that LeMDA can profoundly improve the performance of multimodal deep learning architectures.
arXiv Detail & Related papers (2022-12-29T20:39:36Z) - Transfer Learning with Deep Tabular Models [66.67017691983182]
We show that upstream data gives tabular neural networks a decisive advantage over GBDT models.
We propose a realistic medical diagnosis benchmark for tabular transfer learning.
We propose a pseudo-feature method for cases where the upstream and downstream feature sets differ.
arXiv Detail & Related papers (2022-06-30T14:24:32Z) - SubTab: Subsetting Features of Tabular Data for Self-Supervised
Representation Learning [5.5616364225463055]
We introduce a new framework, Subsetting features of Tabular data (SubTab)
In this paper, we introduce a new framework, Subsetting features of Tabular data (SubTab)
We argue that reconstructing the data from the subset of its features rather than its corrupted version in an autoencoder setting can better capture its underlying representation.
arXiv Detail & Related papers (2021-10-08T20:11:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.