TabGLM: Tabular Graph Language Model for Learning Transferable Representations Through Multi-Modal Consistency Minimization
- URL: http://arxiv.org/abs/2502.18847v1
- Date: Wed, 26 Feb 2025 05:32:45 GMT
- Title: TabGLM: Tabular Graph Language Model for Learning Transferable Representations Through Multi-Modal Consistency Minimization
- Authors: Anay Majee, Maria Xenochristou, Wei-Peng Chen,
- Abstract summary: TabGLM (Tabular Graph Language Model) is a novel multi-modal architecture designed to model both structural and semantic information from a table.<n>It transforms each row of a table into a fully connected graph and serialized text, which are encoded using a graph neural network (GNN) and a text encoder, respectively.<n> Evaluations across 25 benchmark datasets demonstrate substantial performance gains.
- Score: 2.1067477213933503
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Handling heterogeneous data in tabular datasets poses a significant challenge for deep learning models. While attention-based architectures and self-supervised learning have achieved notable success, their application to tabular data remains less effective over linear and tree based models. Although several breakthroughs have been achieved by models which transform tables into uni-modal transformations like image, language and graph, these models often underperform in the presence of feature heterogeneity. To address this gap, we introduce TabGLM (Tabular Graph Language Model), a novel multi-modal architecture designed to model both structural and semantic information from a table. TabGLM transforms each row of a table into a fully connected graph and serialized text, which are then encoded using a graph neural network (GNN) and a text encoder, respectively. By aligning these representations through a joint, multi-modal, self-supervised learning objective, TabGLM leverages complementary information from both modalities, thereby enhancing feature learning. TabGLM's flexible graph-text pipeline efficiently processes heterogeneous datasets with significantly fewer parameters over existing Deep Learning approaches. Evaluations across 25 benchmark datasets demonstrate substantial performance gains, with TabGLM achieving an average AUC-ROC improvement of up to 5.56% over State-of-the-Art (SoTA) tabular learning methods.
Related papers
- Representation Learning for Tabular Data: A Comprehensive Survey [23.606506938919605]
Tabular data, structured as rows and columns, is among the most prevalent data types in machine learning classification and regression applications.
Deep Neural Networks (DNNs) have recently demonstrated promising results through their capability of representation learning.
We organize existing methods into three main categories according to their generalization capabilities.
arXiv Detail & Related papers (2025-04-17T17:58:23Z) - On LLM-Enhanced Mixed-Type Data Imputation with High-Order Message Passing [29.144451092549048]
Missing data imputation aims to impute the missing values in the raw datasets to achieve the completeness of datasets.<n>Existing solutions for missing data imputation either 1) only support numerical and categorical data or 2) show an unsatisfactory performance.<n>We propose UnIMP, a Unified IMPutation framework that leverages LLM and high-order message passing to enhance the imputation of mixed-type data.
arXiv Detail & Related papers (2025-01-04T05:05:44Z) - Graph Learning in the Era of LLMs: A Survey from the Perspective of Data, Models, and Tasks [25.720233631885726]
integration of Graph Neural Networks (GNNs) and Large Language Models (LLMs) has emerged as a promising technological paradigm.<n>We leverage graph description texts with rich semantic context to fundamentally enhance Data quality.<n>This work serves as a foundational reference for researchers and practitioners looking to advance graph learning methodologies.
arXiv Detail & Related papers (2024-12-17T01:41:17Z) - A Survey on Deep Tabular Learning [0.0]
Tabular data presents unique challenges for deep learning due to its heterogeneous nature and lack of spatial structure.
This survey reviews the evolution of deep learning models for Tabular data, from early fully connected networks (FCNs) to advanced architectures like TabNet, SAINT, TabTranSELU, and MambaNet.
arXiv Detail & Related papers (2024-10-15T20:08:08Z) - GT2Vec: Large Language Models as Multi-Modal Encoders for Text and Graph-Structured Data [42.18348019901044]
GT2Vec is a framework that leverages Large Language Models to jointly encode text and graph data.<n>Unlike prior work, we also introduce contrastive learning to align the graph and text spaces more effectively.
arXiv Detail & Related papers (2024-10-15T03:40:20Z) - How to Make LLMs Strong Node Classifiers? [70.14063765424012]
Language Models (LMs) are challenging the dominance of domain-specific models, such as Graph Neural Networks (GNNs) and Graph Transformers (GTs)<n>We propose a novel approach that empowers off-the-shelf LMs to achieve performance comparable to state-of-the-art (SOTA) GNNs on node classification tasks.
arXiv Detail & Related papers (2024-10-03T08:27:54Z) - Knowledge-Aware Reasoning over Multimodal Semi-structured Tables [85.24395216111462]
This study investigates whether current AI models can perform knowledge-aware reasoning on multimodal structured data.
We introduce MMTabQA, a new dataset designed for this purpose.
Our experiments highlight substantial challenges for current AI models in effectively integrating and interpreting multiple text and image inputs.
arXiv Detail & Related papers (2024-08-25T15:17:43Z) - ChartLlama: A Multimodal LLM for Chart Understanding and Generation [70.1393163657813]
We create a high-quality instruction-tuning dataset leveraging GPT-4.
Next, we introduce ChartLlama, a multi-modal large language model that we've trained using our created dataset.
arXiv Detail & Related papers (2023-11-27T15:20:23Z) - FLIP: Fine-grained Alignment between ID-based Models and Pretrained Language Models for CTR Prediction [49.510163437116645]
Click-through rate (CTR) prediction plays as a core function module in personalized online services.
Traditional ID-based models for CTR prediction take as inputs the one-hot encoded ID features of tabular modality.
Pretrained Language Models(PLMs) has given rise to another paradigm, which takes as inputs the sentences of textual modality.
We propose to conduct Fine-grained feature-level ALignment between ID-based Models and Pretrained Language Models(FLIP) for CTR prediction.
arXiv Detail & Related papers (2023-10-30T11:25:03Z) - SubTab: Subsetting Features of Tabular Data for Self-Supervised
Representation Learning [5.5616364225463055]
We introduce a new framework, Subsetting features of Tabular data (SubTab)
In this paper, we introduce a new framework, Subsetting features of Tabular data (SubTab)
We argue that reconstructing the data from the subset of its features rather than its corrupted version in an autoencoder setting can better capture its underlying representation.
arXiv Detail & Related papers (2021-10-08T20:11:09Z) - GraphFormers: GNN-nested Transformers for Representation Learning on
Textual Graph [53.70520466556453]
We propose GraphFormers, where layerwise GNN components are nested alongside the transformer blocks of language models.
With the proposed architecture, the text encoding and the graph aggregation are fused into an iterative workflow.
In addition, a progressive learning strategy is introduced, where the model is successively trained on manipulated data and original data to reinforce its capability of integrating information on graph.
arXiv Detail & Related papers (2021-05-06T12:20:41Z) - GraPPa: Grammar-Augmented Pre-Training for Table Semantic Parsing [117.98107557103877]
We present GraPPa, an effective pre-training approach for table semantic parsing.
We construct synthetic question-pairs over high-free tables via a synchronous context-free grammar.
To maintain the model's ability to represent real-world data, we also include masked language modeling.
arXiv Detail & Related papers (2020-09-29T08:17:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.