論文の概要: Rethinking Impersonation and Dodging Attacks on Face Recognition Systems
- arxiv url: http://arxiv.org/abs/2401.08903v4
- Date: Sun, 18 Aug 2024 01:38:24 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-21 03:47:26.683044
- Title: Rethinking Impersonation and Dodging Attacks on Face Recognition Systems
- Title(参考訳): 顔認識システムにおける偽造と疑似攻撃の再考
- Authors: Fengfan Zhou, Qianyu Zhou, Bangjie Yin, Hui Zheng, Xuequan Lu, Lizhuang Ma, Hefei Ling,
- Abstract要約: 顔認識(FR)システムは、知覚不能な摂動を通じて良質な顔画像を操作する敵の例によって容易に認識できる。
従来の方法では、FRに対する偽装攻撃を成功させることが多いが、ブラックボックス設定でFRに対するドッジ攻撃を成功させるとは限らない。
そこで本稿では, 対人的能力を維持しつつ, 対人的能力を高めるために, 既存の対人的能力を微調整する, 対人的プルーニング(Adv-Pruning, Adv-Pruning)と呼ばれる新たな攻撃手法を提案する。
- 参考スコア(独自算出の注目度): 38.37530847215405
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Face Recognition (FR) systems can be easily deceived by adversarial examples that manipulate benign face images through imperceptible perturbations. Adversarial attacks on FR encompass two types: impersonation (targeted) attacks and dodging (untargeted) attacks. Previous methods often achieve a successful impersonation attack on FR, however, it does not necessarily guarantee a successful dodging attack on FR in the black-box setting. In this paper, our key insight is that the generation of adversarial examples should perform both impersonation and dodging attacks simultaneously. To this end, we propose a novel attack method termed as Adversarial Pruning (Adv-Pruning), to fine-tune existing adversarial examples to enhance their dodging capabilities while preserving their impersonation capabilities. Adv-Pruning consists of Priming, Pruning, and Restoration stages. Concretely, we propose Adversarial Priority Quantification to measure the region-wise priority of original adversarial perturbations, identifying and releasing those with minimal impact on absolute model output variances. Then, Biased Gradient Adaptation is presented to adapt the adversarial examples to traverse the decision boundaries of both the attacker and victim by adding perturbations favoring dodging attacks on the vacated regions, preserving the prioritized features of the original perturbations while boosting dodging performance. As a result, we can maintain the impersonation capabilities of original adversarial examples while effectively enhancing dodging capabilities. Comprehensive experiments demonstrate the superiority of our method compared with state-of-the-art adversarial attack methods.
- Abstract(参考訳): 顔認識(FR)システムは、知覚不能な摂動を通じて良質な顔画像を操作する敵の例によって容易に認識できる。
FRに対する敵対攻撃には、偽装(標的)攻撃とドッジ(対象外)攻撃の2種類がある。
従来の方法では、FRに対する偽装攻撃を成功させることが多いが、ブラックボックス設定でFRに対するドッジ攻撃を成功させるとは限らない。
本稿では,敵対的事例の生成を同時に行うことが重要視される。
そこで,本稿では,既存事例を微調整し,擬人化能力を維持しつつ,そのドッジ能力を高めるための,Adversarial Pruning (Adv-Pruning) と呼ばれる新たな攻撃手法を提案する。
アドブ・プルーニングはプライミング、プルーニング、修復段階で構成されている。
具体的には,従来の逆方向の摂動の領域的優先度を測定するための逆方向優先度定量化法を提案し,絶対モデル出力のばらつきに最小限の影響のあるものを同定・解放する。
次に、ビザドグラディエント適応(Biased Gradient Adaptation)を行い、攻撃者と被害者の双方の意思決定境界を横切るために、空き地に対する妨害攻撃に有利な摂動を追加し、元の摂動の特徴を優先的に保持し、ドッジ性能を向上させることにより、敵の例を適応させる。
その結果、ドッジ能力を効果的に向上しつつ、元の敵の例の偽装能力を維持できることがわかった。
包括的実験は、最先端の対角攻撃法と比較して、本手法の優位性を実証している。
関連論文リスト
- Imperceptible Face Forgery Attack via Adversarial Semantic Mask [59.23247545399068]
本稿では, 対向性, 可視性に優れた対向性例を生成できるASMA(Adversarial Semantic Mask Attack framework)を提案する。
具体的には, 局所的なセマンティック領域の摂動を抑制し, 良好なステルス性を実現する, 対向型セマンティックマスク生成モデルを提案する。
論文 参考訳(メタデータ) (2024-06-16T10:38:11Z) - Distributional Adversarial Loss [15.258476329309044]
敵の攻撃に対して防衛する上での大きな課題は、単純な敵さえも実行可能な攻撃の巨大な空間である。
これにはランダムな平滑化手法が含まれており、敵の影響を除去するために入力にノイズを加える。
もう一つのアプローチは入力の離散化であり、敵の可能なアクションの数を制限する。
論文 参考訳(メタデータ) (2024-06-05T17:03:47Z) - Efficient Generation of Targeted and Transferable Adversarial Examples for Vision-Language Models Via Diffusion Models [17.958154849014576]
大規模視覚言語モデル(VLM)のロバスト性を評価するために、敵対的攻撃を用いることができる。
従来のトランスファーベースの敵攻撃は、高いイテレーション数と複雑なメソッド構造により、高いコストを発生させる。
本稿では, 拡散モデルを用いて, 自然, 制約のない, 対象とする対向的な例を生成するAdvDiffVLMを提案する。
論文 参考訳(メタデータ) (2024-04-16T07:19:52Z) - Multi-granular Adversarial Attacks against Black-box Neural Ranking Models [111.58315434849047]
多粒性摂動を取り入れた高品質な逆数例を作成する。
我々は,多粒体攻撃を逐次的意思決定プロセスに変換する。
本手法は,攻撃の有効性と非受容性の両方において,一般的なベースラインを超えている。
論文 参考訳(メタデータ) (2024-04-02T02:08:29Z) - Discrete Point-wise Attack Is Not Enough: Generalized Manifold
Adversarial Attack for Face Recognition [10.03652348636603]
我々は、より優れた攻撃性能を達成するために、GMAA(Generalized Manifold Adversarial Attack)の新たなパイプラインを導入する。
GMAAは攻撃対象を1から複数に拡大し、生成した敵の例に対して優れた一般化能力を促進する。
提案手法の有効性を実験的に検証し, GMAAは, より高度な一般化能力と視覚的品質を備えた, セマンティックな連続的対角空間を約束することを示した。
論文 参考訳(メタデータ) (2022-12-19T02:57:55Z) - Improving Adversarial Robustness to Sensitivity and Invariance Attacks
with Deep Metric Learning [80.21709045433096]
対向ロバスト性の標準的な方法は、サンプルを最小に摂動させることによって作られたサンプルに対して防御する枠組みを仮定する。
距離学習を用いて、最適輸送問題として逆正則化をフレーム化する。
予備的な結果から, 変分摂動の規則化は, 変分防御と敏感防御の両方を改善することが示唆された。
論文 参考訳(メタデータ) (2022-11-04T13:54:02Z) - Adv-Attribute: Inconspicuous and Transferable Adversarial Attack on Face
Recognition [111.1952945740271]
Adv-Attribute (Adv-Attribute) は、顔認証に対する不明瞭で伝達可能な攻撃を生成するように設計されている。
FFHQとCelebA-HQデータセットの実験は、提案されたAdv-Attributeメソッドが最先端の攻撃成功率を達成することを示している。
論文 参考訳(メタデータ) (2022-10-13T09:56:36Z) - Towards Defending against Adversarial Examples via Attack-Invariant
Features [147.85346057241605]
ディープニューラルネットワーク(DNN)は敵の雑音に弱い。
敵の強靭性は、敵の例を利用して改善することができる。
目に見えない種類の敵の例に基づいて訓練されたモデルは、一般的に、目に見えない種類の敵の例にうまく一般化できない。
論文 参考訳(メタデータ) (2021-06-09T12:49:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。